算法基础---大数

首先是对于阶乘的,求一个 大数的阶乘的精确值,自然而然地用到数组。

/*
*@Filename		Factorial.cpp
*@Author		Hou Yong
*@Date			2014.4.25	07:10
*@Descriotion	输入不超过1000的整数n,输出n!=1*2*3*...*n的精确结果
*/
#include <iostream>
#include <string.h>
#define	MAX	3000
using namespace std;
int f[MAX];

int main(int argc, char *argv[])
{
	int i, j, n;
	cin>>n;
	memset(f, 0, sizeof(f));
	f[0] = 1;
	for(i = 2; i <=n; i++)
	{//乘以i
		int c = 0;
		for(j = 0; j < MAX; j++)
		{
			int s = f[j]*i + c;
			f[j] = s%10;
			c = s/10;
		}
	}
	for(j = MAX-1; j >=0; j--)if(f[j])break;//忽略前导0
	for(i = j; i >=0; i--)cout<<f[i];
	cout<<endl;
	return 0;
}

然后针对大数,想到了之前做的一道关于大数的斐波那契数列,其参数n也是很大


/*
*@filename  FibonacciForBigData.cpp
*@date      2014.4.21   19:37
*/
 
#include <iostream>
using namespace std;
 
//大数据时使用long long数据类型
long long int Fibonacci(int i)
{
    long long p1=0, p2=1, p;
    //估计使用递归可能会超时
    while(--i)
    {
        p = p1 + p2;
        p1 = p2;
        p2 = p;
    }
    return p2;
}
 
int main(int argc, char *argv[])
{
    int n;
    while(cin>>n)
    {
        cout<<Fibonacci(n)<<endl;
    }
    return 0;
}

还有就是,之前参加蓝桥杯,曾经也练习过一道关于斐波那契数列的题,题目描述如下:

Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1。

当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少。


说明:在本题中,答案是要求Fn除以10007的余数,因此我们只要能算出这个余数即可,而不需要先计算出Fn的准确值,再将计算的结果除以10007取余数,直接计算余数往往比先算出原数再取余简单。

#include <iostream>
long f[1000000]={0};
using namespace std;
long fib(int n)
{
    f[1]=1,f[2]=1;
    for(int i=3;i<=n;i++)
    {
        f[i]=f[i-1]+f[i-2];
        if(f[i]>10007)
            f[i]=f[i]-10007;
    }
    return f[n];
}
int main()
{
    int n,i;
    cin>>n;     
    cout<<fib(n)%10007;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值