首先是对于阶乘的,求一个 大数的阶乘的精确值,自然而然地用到数组。
/*
*@Filename Factorial.cpp
*@Author Hou Yong
*@Date 2014.4.25 07:10
*@Descriotion 输入不超过1000的整数n,输出n!=1*2*3*...*n的精确结果
*/
#include <iostream>
#include <string.h>
#define MAX 3000
using namespace std;
int f[MAX];
int main(int argc, char *argv[])
{
int i, j, n;
cin>>n;
memset(f, 0, sizeof(f));
f[0] = 1;
for(i = 2; i <=n; i++)
{//乘以i
int c = 0;
for(j = 0; j < MAX; j++)
{
int s = f[j]*i + c;
f[j] = s%10;
c = s/10;
}
}
for(j = MAX-1; j >=0; j--)if(f[j])break;//忽略前导0
for(i = j; i >=0; i--)cout<<f[i];
cout<<endl;
return 0;
}
然后针对大数,想到了之前做的一道关于大数的斐波那契数列,其参数n也是很大
/*
*@filename FibonacciForBigData.cpp
*@date 2014.4.21 19:37
*/
#include <iostream>
using namespace std;
//大数据时使用long long数据类型
long long int Fibonacci(int i)
{
long long p1=0, p2=1, p;
//估计使用递归可能会超时
while(--i)
{
p = p1 + p2;
p1 = p2;
p2 = p;
}
return p2;
}
int main(int argc, char *argv[])
{
int n;
while(cin>>n)
{
cout<<Fibonacci(n)<<endl;
}
return 0;
}
还有就是,之前参加蓝桥杯,曾经也练习过一道关于斐波那契数列的题,题目描述如下:
Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1。
当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少。
说明:在本题中,答案是要求Fn除以10007的余数,因此我们只要能算出这个余数即可,而不需要先计算出Fn的准确值,再将计算的结果除以10007取余数,直接计算余数往往比先算出原数再取余简单。
#include <iostream>
long f[1000000]={0};
using namespace std;
long fib(int n)
{
f[1]=1,f[2]=1;
for(int i=3;i<=n;i++)
{
f[i]=f[i-1]+f[i-2];
if(f[i]>10007)
f[i]=f[i]-10007;
}
return f[n];
}
int main()
{
int n,i;
cin>>n;
cout<<fib(n)%10007;
return 0;
}