算法基础-RSA公钥体系

前往我的主页以获得更好的阅读体验DearXuan的主页icon-default.png?t=M276https://blog.dearxuan.com/2022/03/11/%E7%AE%97%E6%B3%95%E5%9F%BA%E7%A1%80-RSA%E5%85%AC%E9%92%A5%E4%BD%93%E7%B3%BB/

公钥加密系统

在一个公钥加密系统中,任何人参与者都拥有独自的公钥和密钥,通常用P表示公钥,用S表示密钥,公钥用于加密,密钥用于解密。并且公钥可以公开,任何人都可以使用这个公钥发送一段密文,而只有私钥的持有者才可以用私钥解密

公钥和私钥对应的函数互为反函数

RSA公钥加密体系基于一个数论事实:把两个大质数相乘很容易,但是分解大数为两个质数的乘积很难

RSA加密

在RSA公钥加密系统中,可以通过以下过程创建一对公钥和私钥

  1. 任意选取远大于信息 M 的大质数 p 和 q,且 p != q
  2. 令 n = pq
  3. 计算 φ = (p-1)(q-1)
  4. 选取一个与 φ 互质的小奇数 e
  5. 计算对模 φ 意义下的 e 的乘法逆元 d,即 ed ≡ 1 (mod φ)
  6. 公开 P=(e, n),此即为RSA公钥
  7. 隐藏 S=(d, n),此即为RSA私钥

对于明文 M,使用以下函数进行加密

对于密文 C,使用以下函数进行解密

反函数关系

根据反函数关系,可得

由于 e 和 d 是关于模 φ 的乘法逆元,所以

由于 p 和 q 远大于 M,所以 M ≢ 0(mod p),M ≢ 0(mod q),则

 同理,可以得到以下结论

因此

 由于 n 远大于 M,所以只需要对前者求余,就能得到 M 的值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dear_Xuan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值