欠拟合(underfitting)---训练误差大,测试误差也大---模型过于简单(特征太少)
过拟合(overfitting)---训练误差小,但测试误差大---模型过于复杂(特征太多,使用了复杂的非线性关系;训练样本有误、过少)
过拟合的解决办法:
1、增加训练样本数
2、进行特征选择、特征降维,消除嘈杂特征,消除关联性大的特征(很难做)
3、交叉验证(让所有数据都有过训练)
4、正则化(也属于特征选择)
L2正则化的思想(减少某些特征的影响(权重)):
正则化力度越大,权重(系数)越趋近于0: