Python scikit-learn,欠拟合、过拟合,正则化 (特征选择),岭回归(带正则化的线性回归,解决过拟合)

本文探讨了欠拟合和过拟合问题,指出模型过于简单可能导致欠拟合,而特征过多或复杂非线性关系可能导致过拟合。解决过拟合的方法包括增加训练样本、特征选择、交叉验证和正则化。重点介绍了L2正则化和岭回归,岭回归作为带L2正则化的线性回归,通过调整超参数防止过拟合,提高模型稳定性。
摘要由CSDN通过智能技术生成

欠拟合(underfitting)---训练误差大,测试误差也大---模型过于简单(特征太少)

过拟合(overfitting)---训练误差小,但测试误差大---模型过于复杂(特征太多,使用了复杂的非线性关系;训练样本有误、过少)


过拟合的解决办法:
1、增加训练样本数
2、进行特征选择、特征降维,消除嘈杂特征,消除关联性大的特征(很难做)
3、交叉验证(让所有数据都有过训练)
4、正则化(也属于特征选择)


L2正则化的思想(减少某些特征的影响(权重)):

正则化力度越大,权重(系数)越趋近于0:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值