其声明如下:
type __sync_fetch_and_sub (type * ptr, type value, ...)
type __sync_fetch_and_or (type * ptr, type value, ...)
type __sync_fetch_and_and (type * ptr, type value, ...)
type __sync_fetch_and_xor (type * ptr, type value, ...)
type __sync_fetch_and_nand (type * ptr, type value, ...)
type __sync_add_and_fetch (type * ptr, type value, ...)
type __sync_sub_and_fetch (type * ptr, type value, ...)
type __sync_or_and_fetch (type * ptr, type value, ...)
type __sync_and_and_fetch (type * ptr, type value, ...)
type __sync_xor_and_fetch (type * ptr, type value, ...)
type __sync_nand_and_fetch (type * ptr, type value, ...)
int16_t / uint16_t
int32_t / uint32_t
int64_t / uint64_t
后面的可扩展参数(...)用来指出哪些变量需要memory barrier,因为目前gcc实现的是full barrier(类似于linux kernel 中的mb(),表示这个操作之前的所有内存操作不会被重排序到这个操作之后),所以可以略掉这个参数。
bool __sync_bool_compare_and_swap (type * ptr, type oldval type newval, ...)
type __sync_val_compare_and_swap (type * ptr, type oldval type newval, ...)
write1(dev.register_addr,addr);
write1(dev.register_cmd,READ);
write1(dev.register_control,GO);
如果最后一条write1被换到了前几条语句之前,那么肯定不是我们所期望的,这时候我们可以在最后一条语句之前加入一个memory barrier,强制cpu执行完前面的写入以后再执行最后一条:
write1(dev.register_addr,addr);
write1(dev.register_cmd,READ);
__sync_synchronize();
write1(dev.register_control,GO);
memory barrier有几种类型:
acquire barrier : 不允许将barrier之后的内存读取指令移到barrier之前(linux kernel中的wmb())。
release barrier : 不允许将barrier之前的内存读取指令移到barrier之后 (linux kernel中的rmb())。
full barrier : 以上两种barrier的合集(linux kernel中的mb())。
还有两个函数:
type __sync_lock_test_and_set (type *ptr, type value, ...) 将*ptr设为value并返回*ptr操作之前的值。
void __sync_lock_release (type *ptr, ...) 将*ptr置0
测试场景:假设有一个应用:现在有一个全局变量,用来计数,再创建10个线程并发执行,每个线程中循环对这个全局变量进行++操作(i++),循环加2000000次。
所以很容易知道,这必然会涉及到并发互斥操作。下面通过三种方式来实现这种并发操作。并对比出其在效率上的不同之处。
这里先贴上代码,共5个文件:2个用于做时间统计的文件:timer.h timer.cpp。这两个文件是临时封装的,只用来计时,可以不必细看。
timer.h
- #ifndef TIMER_H
- #define TIMER_H
- #include <sys/time.h>
- class Timer
- {
- public:
- Timer();
- // 开始计时时间
- void Start();
- // 终止计时时间
- void Stop();
- // 重新设定
- void Reset();
- // 耗时时间
- void Cost_time();
- private:
- struct timeval t1;
- struct timeval t2;
- bool b1,b2;
- };
- #endif
timer.cpp
- #include "timer.h"
- #include <stdio.h>
- Timer::Timer()
- {
- b1 = false;
- b2 = false;
- }
- void Timer::Start()
- {
- gettimeofday(&t1,NULL);
- b1 = true;
- b2 = false;
- }
- void Timer::Stop()
- {
- if (b1 == true)
- {
- gettimeofday(&t2,NULL);
- b2 = true;
- }
- }
- void Timer::Reset()
- {
- b1 = false;
- b2 = false;
- }
- void Timer::Cost_time()
- {
- if (b1 == false)
- {
- printf("计时出错,应该先执行Start(),然后执行Stop(),再来执行Cost_time()");
- return ;
- }
- else if (b2 == false)
- {
- printf("计时出错,应该执行完Stop(),再来执行Cost_time()");
- return ;
- }
- else
- {
- int usec,sec;
- bool borrow = false;
- if (t2.tv_usec > t1.tv_usec)
- {
- usec = t2.tv_usec - t1.tv_usec;
- }
- else
- {
- borrow = true;
- usec = t2.tv_usec+1000000 - t1.tv_usec;
- }
- if (borrow)
- {
- sec = t2.tv_sec-1 - t1.tv_sec;
- }
- else
- {
- sec = t2.tv_sec - t1.tv_sec;
- }
- printf("花费时间:%d秒 %d微秒\n",sec,usec);
- }
- }
传统互斥量加锁方式 lock.cpp
- #include <stdio.h>
- #include <stdlib.h>
- #include <pthread.h>
- #include <time.h>
- #include "timer.h"
- pthread_mutex_t mutex_lock;
- static volatile int count = 0;
- void *test_func(void *arg)
- {
- int i = 0;
- for(i = 0; i < 2000000; i++)
- {
- pthread_mutex_lock(&mutex_lock);
- count++;
- pthread_mutex_unlock(&mutex_lock);
- }
- return NULL;
- }
- int main(int argc, const char *argv[])
- {
- Timer timer; // 为了计时,临时封装的一个类Timer。
- timer.Start(); // 计时开始
- pthread_mutex_init(&mutex_lock, NULL);
- pthread_t thread_ids[10];
- int i = 0;
- for(i = 0; i < sizeof(thread_ids)/sizeof(pthread_t); i++)
- {
- pthread_create(&thread_ids[i], NULL, test_func, NULL);
- }
- for(i = 0; i < sizeof(thread_ids)/sizeof(pthread_t); i++)
- {
- pthread_join(thread_ids[i], NULL);
- }
- timer.Stop();// 计时结束
- timer.Cost_time();// 打印花费时间
- printf("结果:count = %d\n",count);
- return 0;
- }
no lock 不加锁的形式 nolock.cpp
- #include <stdio.h>
- #include <stdlib.h>
- #include <pthread.h>
- #include <unistd.h>
- #include <time.h>
- #include "timer.h"
- int mutex = 0;
- int lock = 0;
- int unlock = 1;
- static volatile int count = 0;
- void *test_func(void *arg)
- {
- int i = 0;
- for(i = 0; i < 2000000; i++)
- {
- while (!(__sync_bool_compare_and_swap (&mutex,lock, 1) ))usleep(100000);
- count++;
- __sync_bool_compare_and_swap (&mutex, unlock, 0);
- }
- return NULL;
- }
- int main(int argc, const char *argv[])
- {
- Timer timer;
- timer.Start();
- pthread_t thread_ids[10];
- int i = 0;
- for(i = 0; i < sizeof(thread_ids)/sizeof(pthread_t); i++)
- {
- pthread_create(&thread_ids[i], NULL, test_func, NULL);
- }
- for(i = 0; i < sizeof(thread_ids)/sizeof(pthread_t); i++)
- {
- pthread_join(thread_ids[i], NULL);
- }
- timer.Stop();
- timer.Cost_time();
- printf("结果:count = %d\n",count);
- return 0;
- }
原子函数进行统计方式 atomic.cpp
- #include <stdio.h>
- #include <stdlib.h>
- #include <pthread.h>
- #include <unistd.h>
- #include <time.h>
- #include "timer.h"
- static volatile int count = 0;
- void *test_func(void *arg)
- {
- int i = 0;
- for(i = 0; i < 2000000; i++)
- {
- __sync_fetch_and_add(&count, 1);
- }
- return NULL;
- }
- int main(int argc, const char *argv[])
- {
- Timer timer;
- timer.Start();
- pthread_t thread_ids[10];
- int i = 0;
- for(i = 0; i < sizeof(thread_ids)/sizeof(pthread_t); i++){
- pthread_create(&thread_ids[i], NULL, test_func, NULL);
- }
- for(i = 0; i < sizeof(thread_ids)/sizeof(pthread_t); i++){
- pthread_join(thread_ids[i], NULL);
- }
- timer.Stop();
- timer.Cost_time();
- printf("结果:count = %d\n",count);
- return 0;
- }
#################################################################3
好,代码粘贴完毕。下面进入测试环节:
编译:
[adapter@ZHEJIANG test3]$ g++ lock.cpp ./timer.cpp -lpthread -o lock ;
[adapter@ZHEJIANG test3]$ g++ nolock.cpp ./timer.cpp -lpthread -o nolock ;
[adapter@ZHEJIANG test3]$ g++ atomic.cpp ./timer.cpp -lpthread -o atomic ;
每一个线程循环加2000000次。
第一组测验
[adapter@ZHEJIANG test3]$ ./lock
花费时间:3秒 109807微秒
结果:count = 20000000
[adapter@ZHEJIANG test3]$ ./nolock
花费时间:7秒 595784微秒
结果:count = 20000000
[adapter@ZHEJIANG test3]$ ./atomic
花费时间:0秒 381022微秒
结果:count = 20000000
结论:
可以看出,原子操作函数的速度是最快的,其他两种方式根本就没法比。而无锁操作是在原子操作函数的基础上形成的。
为什么无锁操作的效率会这么低?如果效率低的话,那还有什么意义,为什么现在大家都提倡无锁编程呢?为什么?咱先不
解释,先用数据说话。
第二组测验:
原子操作代码不变,加锁操作代码不变。改动一下无锁操作的代码。
将如下代码更改
while (!(__sync_bool_compare_and_swap (&mutex,lock, 1) ));
更改后:while (!(__sync_bool_compare_and_swap (&mutex,lock, 1) )) usleep(1);
让他睡一微秒。
为什么要这样改代码?这样启不是会更慢?你的猜测是不无道理的,但是一个不休息的人干的活未必比有休息的人干的活多。
[adapter@ZHEJIANG test3]$ ./lock
花费时间:2秒 970773微秒
结果:count = 20000000
[adapter@ZHEJIANG test3]$ ./nolock
花费时间:0秒 685404微秒
结果:count = 20000000
[adapter@ZHEJIANG test3]$ ./atomic
花费时间:0秒 380675微秒
结果:count = 20000000
结论:
不用明说,大家看到的结果是不是很诧异?是不是!有木有!怎么会是这样。无锁加上usleep(1),睡一会,反而会变得这么快。
虽和原子操作相比次了一点,但已经甩开有锁同步好几条街了,无锁比有锁快是应该的,但为什么睡一会会更快,不睡就比有锁
还慢那么多呢?怎么回事。是不是这个测试的时候cpu出现了不稳定的事情。
那好,那再测试几次。
[adapter@ZHEJIANG test3]$ ./nolock
花费时间:0秒 684938微秒
结果:count = 20000000
[adapter@ZHEJIANG test3]$ ./nolock
花费时间:0秒 686039微秒
结果:count = 20000000
[adapter@ZHEJIANG test3]$ ./nolock
花费时间:0秒 685928微秒
结果:count = 20000000
现在总没话可说了,这是事实!但为什么,我也不会解释。
很好奇,为什么越休息,效率越高。电脑是机器,它可不是人。怎么会这样?
那我就让它多休息一会:
while (!(__sync_bool_compare_and_swap (&mutex,lock, 1) ))usleep(10); //之前是1,现在改成10了。
下面就再单独对比一个nolock无锁方式。
[adapter@ZHEJIANG test3]$ ./nolock //usleep(1);
花费时间:0秒 686039微秒
结果:count = 20000000
[adapter@ZHEJIANG test3]$ ./nolock //usleep(10);
花费时间:0秒 680307微秒
结果:count = 20000000
nolock,结果usleep(10)居然比uleep(1)还要快一点。
那么这样呢:
while (!(__sync_bool_compare_and_swap (&mutex,lock, 1) ))usleep(100); //之前是10,现在改成100了。
[adapter@ZHEJIANG test3]$ ./nolock //usleep(100)
花费时间:0秒 661935微秒
结果:count = 20000000
还是睡的越久,效率越高。
那我再试一下usleep(1000)
while (!(__sync_bool_compare_and_swap (&mutex,lock, 1) ))usleep(1000); //之前是100,现在改成1000了。
[adapter@ZHEJIANG test3]$ ./nolock // usleep(1000);
花费时间:0秒 652411微秒
结果:count = 20000000
还是睡的越久,效率越高。
那我再试一下usleep(10000)
while (!(__sync_bool_compare_and_swap (&mutex,lock, 1) ))usleep(10000); //之前是1000,现在改成10000了。
[adapter@ZHEJIANG test3]$ ./nolock
花费时间:0秒 626267微秒
结果:count = 20000000
还是睡的越久,效率越高。
那我再试一下usleep(100000)
while (!(__sync_bool_compare_and_swap (&mutex,lock, 1) ))usleep(100000); //之前是10000,现在改成100000了,也就是0.1秒。
[adapter@ZHEJIANG test3]$ ./nolock
花费时间:0秒 942445微秒
结果:count = 20000000
哦,现在开始速度慢了。
执行环境:
gcc版本信息:
[adapter@ZHEJIANG test3]$ g++ -v
Using built-in specs.
Target: x86_64-redhat-linux
gcc version 4.4.5 20110214 (Red Hat 4.4.5-6) (GCC)
cpu信息:
[adapter@ZHEJIANG test3]$ cat /proc/cpuinfo | grep name | cut -f2 -d: | uniq -c
4 Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz
通过编程测试及测试得出结论:
1、如果是想用全局变量来做统计操作。而又不得不考虑多线程间的互斥访问的话,最好使用编译器支持的原子操作函数。
再满足互斥访问的前提下,编程最简单,效率最高。
2、lock-free,无锁编程方式确实能够比传统加锁方式效率高,经上面测试可以发现,可以快到5倍左右。所以在高并发程序中
采用无锁编程的方式可以进一步提高程序效率。
3、但是,得对无锁方式有足够熟悉的了解,不然效率反而会更低。而且容易出错。
4、没想明白的疑问:为什么上面的循环检测时,加uleep比不加,效率更高。为什么在一定程度上,usleep越久效率越高?
请高手路过的时候,为小弟解答一下。谢谢。