spark 2.1 Aggregator

Aggregator

/**
 * :: DeveloperApi ::
 * A set of functions used to aggregate data.
 *
 * @param createCombiner function to create the initial value of the aggregation.
 * @param mergeValue function to merge a new value into the aggregation result.
 * @param mergeCombiners function to merge outputs from multiple mergeValue function.
 */
@DeveloperApi
case class Aggregator[K, V, C] (
    createCombiner: V => C,
    mergeValue: (C, V) => C,
    mergeCombiners: (C, C) => C) {

combineValuesByKey

  def combineValuesByKey(
      iter: Iterator[_ <: Product2[K, V]],
      context: TaskContext): Iterator[(K, C)] = {
    val combiners = new ExternalAppendOnlyMap[K, V, C](createCombiner, mergeValue, mergeCombiners)
    combiners.insertAll(iter)
    updateMetrics(context, combiners)
    combiners.iterator
  }

combineCombinersByKey

def combineCombinersByKey(
      iter: Iterator[_ <: Product2[K, C]],
      context: TaskContext): Iterator[(K, C)] = {
    val combiners = new ExternalAppendOnlyMap[K, C, C](identity, mergeCombiners, mergeCombiners)
    combiners.insertAll(iter)
    updateMetrics(context, combiners)
    combiners.iterator
  }

updateMetrics

 /** Update task metrics after populating the external map. */
  private def updateMetrics(context: TaskContext, map: ExternalAppendOnlyMap[_, _, _]): Unit = {
    Option(context).foreach { c =>
      c.taskMetrics().incMemoryBytesSpilled(map.memoryBytesSpilled)
      c.taskMetrics().incDiskBytesSpilled(map.diskBytesSpilled)
      c.taskMetrics().incPeakExecutionMemory(map.peakMemoryUsedBytes)
    }
  }

ExternalAppendOnlyMap

/**
 * :: DeveloperApi ::
 * An append-only map that spills sorted content to disk when there is insufficient space for it
 * to grow.
 *
 * This map takes two passes over the data:
 *
 *   (1) Values are merged into combiners, which are sorted and spilled to disk as necessary
 *   (2) Combiners are read from disk and merged together
 *
 * The setting of the spill threshold faces the following trade-off: If the spill threshold is
 * too high, the in-memory map may occupy more memory than is available, resulting in OOM.
 * However, if the spill threshold is too low, we spill frequently and incur unnecessary disk
 * writes. This may lead to a performance regression compared to the normal case of using the
 * non-spilling AppendOnlyMap.
 */
@DeveloperApi
class ExternalAppendOnlyMap[K, V, C](
    createCombiner: V => C,
    mergeValue: (C, V) => C,
    mergeCombiners: (C, C) => C,
    serializer: Serializer = SparkEnv.get.serializer,
    blockManager: BlockManager = SparkEnv.get.blockManager,
    context: TaskContext = TaskContext.get(),
    serializerManager: SerializerManager = SparkEnv.get.serializerManager)
  extends Spillable[SizeTracker](context.taskMemoryManager())
   with Serializable
  with Logging
  with Iterable[(K, C)] {

fields and constructors

if (context == null) {
    throw new IllegalStateException(
      "Spillable collections should not be instantiated outside of tasks")
  }

  // Backwards-compatibility constructor for binary compatibility
  def this(
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      serializer: Serializer,
      blockManager: BlockManager) {
    this(createCombiner, mergeValue, mergeCombiners, serializer, blockManager, TaskContext.get())
  }

  @volatile private var currentMap = new SizeTrackingAppendOnlyMap[K, C]
  private val spilledMaps = new ArrayBuffer[DiskMapIterator]
  private val sparkConf = SparkEnv.get.conf
  private val diskBlockManager = blockManager.diskBlockManager

  /**
   * Size of object batches when reading/writing from serializers.
   *
   * Objects are written in batches, with each batch using its own serialization stream. This
   * cuts down on the size of reference-tracking maps constructed when deserializing a stream.
   *
   * NOTE: Setting this too low can cause excessive copying when serializing, since some serializers
   * grow internal data structures by growing + copying every time the number of objects doubles.
   */
  private val serializerBatchSize = sparkConf.getLong("spark.shuffle.spill.batchSize", 10000)

  // Number of bytes spilled in total
  private var _diskBytesSpilled = 0L
  def diskBytesSpilled: Long = _diskBytesSpilled

  // Use getSizeAsKb (not bytes) to maintain backwards compatibility if no units are provided
  private val fileBufferSize =
    sparkConf.getSizeAsKb("spark.shuffle.file.buffer", "32k").toInt * 1024

  // Write metrics
  private val writeMetrics: ShuffleWriteMetrics = new ShuffleWriteMetrics()

  // Peak size of the in-memory map observed so far, in bytes
  private var _peakMemoryUsedBytes: Long = 0L
  def peakMemoryUsedBytes: Long = _peakMemoryUsedBytes

  private val keyComparator = new HashComparator[K]
  private val ser = serializer.newInstance()

  @volatile private var readingIterator: SpillableIterator = null

  /**
   * Number of files this map has spilled so far.
   * Exposed for testing.
   */
  private[collection] def numSpills: Int = spilledMaps.size
/**
   * Insert the given key and value into the map.
   */
  def insert(key: K, value: V): Unit = {
    insertAll(Iterator((key, value)))
  }

  /**
   * Insert the given iterator of keys and values into the map.
   *
   * When the underlying map needs to grow, check if the global pool of shuffle memory has
   * enough room for this to happen. If so, allocate the memory required to grow the map;
   * otherwise, spill the in-memory map to disk.
   *
   * The shuffle memory usage of the first trackMemoryThreshold entries is not tracked.
   */
  def insertAll(entries: Iterator[Product2[K, V]]): Unit = {
    if (currentMap == null) {
      throw new IllegalStateException(
        "Cannot insert new elements into a map after calling iterator")
    }
    // An update function for the map that we reuse across entries to avoid allocating
    // a new closure each time
    var curEntry: Product2[K, V] = null
    val update: (Boolean, C) => C = (hadVal, oldVal) => {
      if (hadVal) mergeValue(oldVal, curEntry._2) else createCombiner(curEntry._2)
    }

    while (entries.hasNext) {
      curEntry = entries.next()
      val estimatedSize = currentMap.estimateSize()
      if (estimatedSize > _peakMemoryUsedBytes) {
        _peakMemoryUsedBytes = estimatedSize
      }
      if (maybeSpill(currentMap, estimatedSize)) {
        currentMap = new SizeTrackingAppendOnlyMap[K, C]
      }
      currentMap.changeValue(curEntry._1, update)
      addElementsRead()
    }
  }

  /**
   * Insert the given iterable of keys and values into the map.
   *
   * When the underlying map needs to grow, check if the global pool of shuffle memory has
   * enough room for this to happen. If so, allocate the memory required to grow the map;
   * otherwise, spill the in-memory map to disk.
   *
   * The shuffle memory usage of the first trackMemoryThreshold entries is not tracked.
   */
  def insertAll(entries: Iterable[Product2[K, V]]): Unit = {
    insertAll(entries.iterator)
  }

maybeSpill

/**
   * Spills the current in-memory collection to disk if needed. Attempts to acquire more
   * memory before spilling.
   *
   * @param collection collection to spill to disk
   * @param currentMemory estimated size of the collection in bytes
   * @return true if `collection` was spilled to disk; false otherwise
   */
  protected def maybeSpill(collection: C, currentMemory: Long): Boolean = {
    var shouldSpill = false
    if (elementsRead % 32 == 0 && currentMemory >= myMemoryThreshold) {
      // Claim up to double our current memory from the shuffle memory pool
      val amountToRequest = 2 * currentMemory - myMemoryThreshold
      val granted = acquireMemory(amountToRequest)
      myMemoryThreshold += granted
      // If we were granted too little memory to grow further (either tryToAcquire returned 0,
      // or we already had more memory than myMemoryThreshold), spill the current collection
      shouldSpill = currentMemory >= myMemoryThreshold
    }
    shouldSpill = shouldSpill || _elementsRead > numElementsForceSpillThreshold
    // Actually spill
    if (shouldSpill) {
      _spillCount += 1
      logSpillage(currentMemory)
      spill(collection)
      _elementsRead = 0
      _memoryBytesSpilled += currentMemory
      releaseMemory()
    }
    shouldSpill
  }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值