【编程题】数据流中的中位数

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/houzijushi/article/details/81559906

【编程题】数据流中的中位数

题目描述

如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。

我的代码(2018年9月2日)

class Solution {
private:
    vector<int> minheap, maxheap;
public:
    void Insert(int num)
    {
        if(maxheap.size() == 0) {
            maxheap.push_back(num);
            return;
        }
        if(maxheap.size() - minheap.size() == 1) {
            minheap.push_back(num);
            push_heap(minheap.begin(), minheap.end(), greater<int>());
        }
        else {
            maxheap.push_back(num);
            push_heap(maxheap.begin(), maxheap.end(), less<int>());
        }

        if(minheap[0] < maxheap[0]) {
            pop_heap(minheap.begin(), minheap.end(), greater<int>());
            pop_heap(maxheap.begin(), maxheap.end(), less<int>());
            swap(minheap.back(), maxheap.back());
            push_heap(minheap.begin(), minheap.end(), greater<int>());
            push_heap(maxheap.begin(), maxheap.end(), less<int>());
        }
    }

    double GetMedian()
    { 
        double res = 0.0;
        if(minheap.size() == maxheap.size()) {
            res = (double)(minheap[0] + maxheap[0]) / 2;
        }
        else {
            res = maxheap[0];
        }
        return res;
    }

};

我的代码

class Solution {
private:
    vector<int> min, max;
public:
    void Insert(int num)
    {
        if(max.size() == 0) {
            max.push_back(num);
            return ;
        }

        if(num > max[0]) {
            min.push_back(num);
            push_heap(min.begin(), min.end(), greater<int>());
        }
        else {
            max.push_back(num);
            push_heap(max.begin(), max.end(), less<int>());
        }

        if(min.size() > max.size()) {
            int tmp = min[0];
            pop_heap(min.begin(), min.end(), greater<int>());
            min.pop_back();
            max.push_back(tmp);
            push_heap(max.begin(), max.end(), less<int>());
        }
        else if(max.size() - min.size() > 1) {
            int tmp = max[0];
            pop_heap(max.begin(), max.end(), less<int>());
            max.pop_back();
            min.push_back(tmp);
            push_heap(min.begin(), min.end(), greater<int>());
        }

    }

    double GetMedian()
    { 
        int len = min.size() + max.size();
        if(len == 0) return 0.0;
        else if(len == 1) return (double)(max[0]);
        else if(len % 2 == 0) return (double)(min[0] + max[0])/2.0;
        else return (double)(max[0]);
    }

};

说明:

保持一个最大堆和一个最小堆,并使得最大堆的大小比最小堆的大小大1或相等,最大堆的最大数大于等于最小堆的最小数。

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试