高等数学学习笔记——第三十六讲——曲率

本文深入探讨了曲线的弯曲程度量化方法,从光滑曲线的定义到弧长函数,解析了弧微分与微分三角形的关系,揭示了长度相同曲线下切线转角与弯曲程度的关系。通过曲率的定义与计算,辅以实例,阐述了曲率圆的概念,包括曲率半径和曲率中心,最后讨论了铁路中缓和曲线的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

1. 问题引入——如何刻画曲线的弯曲程度?

 

2. 光滑曲线的定义

 

3. 弧长函数

 

4. 弧微分

 

5. 弧微分与微分三角形的关系(弧微分等于微分三角形斜边长)

 

6. 如何刻画曲线的完全程度?(长度相同的曲线,切线转角越大,弯曲程度越大;切线转角相同的曲线,弧长越小,弯曲程度越大)

 

7. 曲率的定义

 

8. 曲率的计算

 

9. 曲率计算示例

 

 

10. 曲率圆(曲率半径和曲率中心)

 

11. 铁路中的缓和曲线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值