Week 1 resources(第1周参考资料)
Below you'll find links to the research papers discussed in this weeks videos. You don't need to understand all the technical details discussed in these papers - you have already seen the most important points you'll need to answer the quizzes in the lecture videos.
However, if you'd like to take a closer look at the original research, you can read the papers and articles via the links below.
- Generative AI Lifecycle
- Generative AI on AWS: Building Context-Aware, Multimodal Reasoning Applications - This O'Reilly book dives deep into all phases of the generative AI lifecycle including model selection, fine-tuning, adapting, evaluation, deployment, and runtime optimizations.
- Transformer Architecture
- Attention is All You Need - This paper introduced the Transformer architecture, with the core “self-attention” mechanism. This article was the foundation for LLMs.
- BLOOM: BigScience 176B Model - BLOOM is a open-source LLM with 176B parameters trained in an open and transparent way. In this paper, the authors present a detailed discussion of the dataset and process used to train the model. You can also see a high-level overview of the model