“在数学中,函数 f 的图形(或图象)指的是所有有序对(x, f(x))组成的集合。具体而言,如果x为实数,则函数图形在平面直角坐标系上呈现为一条曲线。如果函数自变量为两个实数组成的有序对(x, y),则图形就是空间上的点(x, y, f(x, y))组成的集合,呈现为曲面。”
如果不借助计算机,手绘函数图形需经过三步曲:取点、描点、连线(注意画出特殊点(间断点、顶点、尖点、拐点等)。要准确画出函数图形,需掌握函数的几个重要的性质:单调性、最值、周期性、奇偶性、对称性等,以及几个基本变换(平移、对称、伸缩)。
所以,必须感谢Mathematica这样的数学软件,有了它,画个函数图形仅需一行命令即可。
言归正传,这道实验题并不难(不是那种花几个小时还解不出来的题目)。



彩蛋:需要注意一点,要灵活使用“PlotRange -> All”这一选项(对函数图形具体呈现影响很大!)。如果你觉得画出的函数图形有点奇怪,可试着在命令中加入该选项;如果觉得函数比例失调,可试着移除该选项。毕竟,计算机是帮我们干活的,干的好不好,还需主人说了算。