使用Mathematica绘制蔓叶线图形(Cissoid of Diocles)

本文介绍了蔓叶线的定义及其历史背景,详细解释了蔓叶线的构造方法,并给出了其极坐标方程与直角坐标方程的推导过程。蔓叶线是一种重要的几何曲线,在数学领域有着广泛的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义:

百度百科:“蔓叶线,有时又叫双蔓叶线是Diocle是在公元前180年发现的曲线。在几何形状中,蔓叶线是从两个给定曲线C1,C2和点O(极点)产生的曲线。”

Wikipedia:“ In geometry , the cissoid of Diocles is a cubic plane curve notable for the property that it can be used to construct two mean proportionals to a given ratio . In particular, it can be used to double a cube . It can be defined as the cissoid of a circle and a line tangent to it with respect to the point on the circle opposite to the point of tangency. In fact, the family of cissoids is named for this example and some authors refer to it simply as the cissoid. It has a single cusp at the pole, and is symmetric about the diameter of the circle which is the line of tangency of the cusp. The line is an asymptote . It is a member of the conchoid of de Sluze family of curves and in form it resembles a tractrix .

Mathematica中蔓叶线的绘制:


扩展知识:蔓叶线的构建及极坐标方程、直角坐标方程的推导过程(清晰易懂)
-----------------------------------------------------------------------

以下内容转自 Wikipedia

Construction and equations


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值