题目:
2.2 - 17. 设 Subscript[a, 1] = 1, Subscript[a, n]=1 + 1/(1 +Subscript[a, n-1] ), n = 2, 3, ...,
(1)试计算该数列的前面若干项,并作出点列图,观察数列的特点;
(2)结合观察的结果,利用分析证明Limit[Subscript[a, n],n->\[Infinity]] = Sqrt[2]. 这相当于给出了连分式展开
Sqrt[2] = 1 + 1/(1+(1/1 + ... ) )
(1)试计算该数列的前面若干项,并作出点列图,观察数列的特点;
(2)结合观察的结果,利用分析证明Limit[Subscript[a, n],n->\[Infinity]] = Sqrt[2]. 这相当于给出了连分式展开
Sqrt[2] = 1 + 1/(1+(1/1 + ... ) )
