代码随想录day18

二叉树 7

二叉搜索数的最小绝对差

给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。

差值是一个正数,其数值等于两值之差的绝对值。

在这里插入图片描述

思路

体会二叉搜索树的特点,在中序遍历的情况下是有序的,因此可以利用二叉搜索树中的双指针来求解,用一个变量存储前一个节点,在中序遍历中求解最小值

递归方法

class Solution {
    int min = Integer.MAX_VALUE;
    TreeNode pre; // 存储前一节点
    public int getMinimumDifference(TreeNode root) {
        dfs(root);
        return min;
    }
    public void dfs(TreeNode root){
        if(root == null)
            return;
        dfs(root.left);
        // 中序遍历操作
        if(pre != null)
            min = Math.min(min,root.val - pre.val);
        pre = root;
        dfs(root.right);
    }

}

二叉搜索树中的众数

给你一个含重复值的二叉搜索树(BST)的根节点 root ,找出并返回 BST 中的所有 众数(即,出现频率最高的元素)。

如果树中有不止一个众数,可以按 任意顺序 返回。

假定 BST 满足如下定义:

  • 结点左子树中所含节点的值 小于等于 当前节点的值
  • 结点右子树中所含节点的值 大于等于 当前节点的值
  • 左子树和右子树都是二叉搜索树

在这里插入图片描述

思路

1、比较容易想到的是,通过遍历,借助于哈希表统计每个变量出现的次数,然后求解,这种方法适合在二叉树下使用,但本题是二叉搜索树,要利用其中序遍历的特点
2、在中序遍历时,借助于多个中间变量实现统计次数

class Solution {
    List<Integer> res = new ArrayList<>();
    TreeNode pre; // 记录上一节点
    int count = 1; // 统计次数
    int maxCount = 0; // 出现最大频率

    public int[] findMode(TreeNode root) {
        dfs(root);
        return res.stream().mapToInt(Integer::intValue).toArray();
    }

    public void dfs(TreeNode root) {
        if (root == null)
            return;
        dfs(root.left);
		// 中序操作
        if (pre == null || pre.val < root.val) {
            count = 1;
        } else {
            ++count;
        }

        if (count == maxCount) {
            res.add(root.val);
        } else if (count > maxCount) {
            maxCount = count;
            res.clear();
            res.add(root.val);
        }

        pre = root;

        dfs(root.right);
    }

}

二叉树的最近公共祖先

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。

在这里插入图片描述

思路

找到公共祖先,那么显而易见的就是回溯,而二叉树中后序遍历,即左右中,就是天然的回溯,因此可以借助于后序遍历,来确定公共祖先

  • p 和 q在 root的子树中,且分列 root 的 异侧(即分别在左、右子树中);
  • p=root ,且 q 在 root 的左或右子树中;
  • q=root ,且 p 在 root 的左或右子树中

1、 当 left和 right同时为空 :说明 root 的左 / 右子树中都不包含 p,q,返回 null;
2、 当 left 和 right同时不为空 :说明 p,q分列在 root的 异侧 (分别在 左 / 右子树),因此 root为最近公共祖先,返回 root;
3、 当 left为空 ,right不为空 :p,q都不在 root的左子树中,直接返回 right。具体可分为两种情况:
a、p,q其中一个在 root 的 右子树 中,此时 right指向 p(假设为 p);
b、p,q 两节点都在 root的 右子树 中,此时的 right指向 最近公共祖先节点 ;
4、 当 left不为空 , right为空 :与情况 3. 同理

    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if(root == null || root == p || root == q)
            return root;
        TreeNode left = lowestCommonAncestor(root.left,p,q);
        TreeNode right = lowestCommonAncestor(root.right,p,q);
        if(left == null) return right;
        if(right == null) return left;
        return root;
    }
### 关于代码随想录 Day04 的学习资料与解析 #### 一、Day04 主要内容概述 代码随想录 Day04 的主要内容围绕 **二叉树的遍历** 展开,包括前序、中序和后序三种遍历方式。这些遍历可以通过递归实现,也可以通过栈的方式进行迭代实现[^1]。 #### 二、二叉树的遍历方法详解 ##### 1. 前序遍历(Pre-order Traversal) 前序遍历遵循访问顺序:根节点 -> 左子树 -> 右子树。以下是基于递归的实现: ```python def preorderTraversal(root): result = [] def traversal(node): if not node: return result.append(node.val) # 访问根节点 traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 对于迭代版本,则可以利用显式的栈来模拟递归过程: ```python def preorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: result.append(current.val) # 访问当前节点 stack.append(current) # 将当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 current = current.right # 转向右子树 return result ``` ##### 2. 中序遍历(In-order Traversal) 中序遍历遵循访问顺序:左子树 -> 根节点 -> 右子树。递归实现如下: ```python def inorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 result.append(node.val) # 访问根节点 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 迭代版本同样依赖栈结构: ```python def inorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: stack.append(current) # 当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 result.append(current.val) # 访问当前节点 current = current.right # 转向右子树 return result ``` ##### 3. 后序遍历(Post-order Traversal) 后序遍历遵循访问顺序:左子树 -> 右子树 -> 根节点。递归实现较为直观: ```python def postorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 result.append(node.val) # 访问根节点 traversal(root) return result ``` 而迭代版本则稍复杂一些,通常采用双栈法或标记法完成: ```python def postorderTraversal_iterative(root): if not root: return [] stack, result = [root], [] while stack: current = stack.pop() result.insert(0, current.val) # 插入到结果列表头部 if current.left: stack.append(current.left) # 先压左子树 if current.right: stack.append(current.right) # 再压右子树 return result ``` #### 三、补充知识点 除了上述基本的二叉树遍历外,Day04 还可能涉及其他相关内容,例如卡特兰数的应用场景以及组合问题的基础模板[^2][^4]。如果遇到具体题目,可以根据实际需求调用相应算法工具。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值