参考博客:click here!
链式二叉树存储结构:
typedef int DataType;
typedef struct BiNode {
DataType data;
struct BiNode *lc, *rc; // 左右子节点指针
int depth;
} BiNode, *BiTree;
初始化:
void rootInit(BiTree &root)
{
root = NULL;
assert(!root); // 检查root是否合法
return;
}
先序遍历: 根左右
递归先序遍历遵循条件:
先访问根节点, 然后访问左子节点, 最后访问右子节点。(根左右)
二叉树为空则停止递归
void PreOrder(BiTree &root) // 递归先序遍历
{
if(root == NULL)
return;
cout << root->data << " ";
PreOrder(root->lc);
PreOrder(root->rc);
}
非递归版本的先序遍历:
1.若根节点为空(空树,不需要遍历),直接返回;
2.否则,将根节点入栈;
3.判断栈是否为空,不为空进入循环;
4.取栈顶结点并访问该节点,同时将该节点出栈;
5.若该节点的右子树不为空,将右孩子结点入栈;
6.若该节点的左子树不为空,将左孩子节点入栈;
7.直到栈为空,跳出循环,完成了先序遍历。
void PreOrder2(BiTree &root) // 非递归先序遍历
{
stack<BiTree> s; // 定义一个栈
while( !s.empty()) s.pop(); // 清空
if(root != NULL)
s.push(root);
BiTree tmp; // 临时
while( !s.empty()) // 栈不为空
{
tmp = s.top(); // 获得栈顶元素
s.pop();
cout << tmp->data << " ";
if(tmp->lc != NULL) // 先序遍历,必须先判断右子树
s.push(tmp->rc);
if(tmp->rc != NULL) // 判断右子树
s.push(tmp->lc);
}
cout << endl;
return;
}
中序遍历:左根右
递归中序遍历遵循条件: 若二叉树为空,直接返回;
1.遍历二叉树的左子树
2.访问根节点
3.遍历二叉树的右子树
void MidOrder(BiTree &root) // 中序遍历 递归
{
if(root == NULL)
return;
MidOrder(root->lc); // 先左
cout << root->data << " "; // 然后根
MidOrder(root->rc); // 最后右
}
非递归中序遍历:
1.若树为空,直接返回;否则令tmp=root,进入循环(跳出条件为栈为空 或 tmp==NULL)
2.循环的将tmp节点的所有左子树入栈
3.取栈顶结点为tmp,访问该节点并出栈
4.令tmp=tmp的右孩子,进入下一次循环
void MidOrder2(BiTree &root) // 中序遍历 非递归
{
stack<BiTree> s;
while( !s.empty()) s.pop();
BiTree tmp = root;
while( !s.empty() || tmp != NULL)
{
while(tmp != NULL) // 中序遍历,先向左边找, 左边没有就输出根
{
s.push(tmp);
tmp = tmp->lc;
}
tmp = s.top();
cout << tmp->data << " "; // 然后根
tmp = tmp->rc; // 向右
s.pop();
}
cout << endl;
}
后续遍历:左右根
递归后序遍历
void PostOrder(BiTree &root) // 后序遍历
{
if(root == NULL)
return;
PostOrder(root->lc); // left
PostOrder(root->rc); // right
cout << root->data << " "; // root
}
非递归后序遍历:
1.若树为空,直接返回;否则令tmp= root,进入循环(条件为栈非空或tmp!=NULL)
2.循环的将所有左子树入栈;
3.去栈顶结点,若该节点没有右子树或者右子树已经访问过了,则访问该节点并出栈;
4.否则,令tmp为该节点的右子树,进入下一层循环。
void PostOrder2(BiTree &root) // 非递归后序遍历
{
stack<BiTree> s;
while( !s.empty()) s.pop();
BiTree tmp = root;
BiTree pre = NULL; // 记录先前刚访问过的结点
BiTree top; // 用于临时保存栈顶结点
while( !s.empty() || tmp != NULL)
{
while(tmp != NULL) // 先一直向左
{
s.push(tmp);
tmp = tmp->lc;
}
top = s.top();
if(top->rc == NULL || top->rc == pre) // 如果右子节点为空或者已经访问过
{ // 如果没有右子节点或者已经访问过就输出当前子树的根节点,并出栈
cout << top->data << " ";
pre = top; // 用于从右子节点回溯的时候判断右子节点是否已经访问过
s.pop();
}
else
tmp = top->rc;
}
}
完整代码:
#include <iostream>
#include <assert.h>
#include <stack>
using namespace std;
typedef int DataType;
typedef struct BiNode {
DataType data;
struct BiNode *lc, *rc; // 左右子节点指针
int depth;
} BiNode, *BiTree;
void rootInit(BiTree &root)
{
root = NULL;
assert(!root); // 检查root是否合法
return;
}
/* 先序遍历 根左右 */
void PreOrder(BiTree &root) // 递归先序遍历
{
if(root == NULL)
return;
cout << root->data << " ";
PreOrder(root->lc);
preOrder(root->rc);
}
void PreOrder2(BiTree &root) // 非递归先序遍历
{
stack<BiTree> s; // 定义一个栈
while( !s.empty()) s.pop(); // 清空
if(root != NULL)
s.push(root);
BiTree tmp; // 临时
while( !s.empty()) // 栈不为空
{
tmp = s.top(); // 获得栈顶元素
s.pop();
cout << tmp->data << " ";
if(tmp->lc != NULL) // 先序遍历,必须先判断右子树
s.push(tmp->rc);
if(tmp->rc != NULL) // 判断右子树
s.push(tmp->lc);
}
cout << endl;
return;
}
/* 中序遍历 左根右 */
void MidOrder(BiTree &root) // 中序遍历 递归
{
if(root == NULL)
return;
MidOrder(root->lc); // 先左
cout << root->data << " "; // 然后根
MidOrder(root->rc); // 最后右
}
void MidOrder2(BiTree &root) // 中序遍历 非递归
{
stack<BiTree> s;
while( !s.empty()) s.pop();
BiTree tmp = root;
while( !s.empty() || tmp != NULL)
{
while(tmp != NULL) // 中序遍历,先向左边找, 左边没有就输出根
{
s.push(tmp);
tmp = tmp->lc;
}
tmp = s.top();
cout << tmp->data << " "; // 然后根
tmp = tmp->rc; // 向右
s.pop();
}
cout << endl;
}
/* 后序遍历 左右根 */
void PostOrder(BiTree &root) // 后序遍历
{
if(root == NULL)
return;
PostOrder(root->lc); // left
PostOrder(root->rc); // right
cout << root->data << " "; // root
}
void PostOrder2(BiTree &root) // 非递归后序遍历
{
stack<BiTree> s;
while( !s.empty()) s.pop();
BiTree tmp = root;
BiTree pre = NULL; // 记录先前刚访问过的结点
BiTree top; // 用于临时保存栈顶结点
while( !s.empty() || tmp != NULL)
{
while(tmp != NULL) // 先一直向左
{
s.push(tmp);
tmp = tmp->lc;
}
top = s.top();
if(top->rc == NULL || top->rc == pre) // 如果右子节点为空或者已经访问过
{ // 如果没有右子节点或者已经访问过就输出当前子树的根节点,并出栈
cout << top->data << " ";
pre = top; // 用于从右子节点回溯的时候判断右子节点是否已经访问过
s.pop();
}
else
tmp = top->rc;
}
}
int main()
{
return 0;
}