nyoj 90 176 整数划分一 二 和 nyoj 279 队花的烦恼二

整数划分问题是算法中的一个经典命题之一,有关这个问题的讲述在讲解到递归时基本都将涉及。所谓整数划分,是指把一个正整数n写成如下形式:

       n=m1+m2+...+mi; (其中mi为正整数,并且1 <= mi <= n),则{m1,m2,...,mi}为n的一个划分。

       如果{m1,m2,...,mi}中的最大值不超过m,即max(m1,m2,...,mi)<=m,则称它属于n的一个m划分。这里我们记n的m划分的个数为f(n,m);

       例如但n=4时,他有5个划分,{4},{3,1},{2,2},{2,1,1},{1,1,1,1};

       注意4=1+3 和 4=3+1被认为是同一个划分。

       该问题是求出n的所有划分个数,即f(n, n)。下面我们考虑求f(n,m)的方法;


根据n和m的关系,考虑以下几种情况: 

       (1)当n=1时,不论m的值为多少(m>0),只有一种划分即{1};

        (2)  当m=1时,不论n的值为多少,只有一种划分即{n};

        (3)  当n=m时,根据划分中是否包含n,可以分为两种情况:

              (a). 划分中包含n的情况,只有一个即{n};

              (b). 划分中不包含n的情况,这时划分中最大的数字也一定比n小,即n的所有(n-1)划分。

              因此 f(n,n) =1 + f(n,n-1);

        (4) 当n<m时,由于划分中不可能出现负数,因此就相当于f(n,n);

        (5) 但n>m时,根据划分中是否包含最大值m,可以分为两种情况:

               (a). 划分中包含m的情况,即{m, {x1,x2,...xi}}, 其中{x1,x2,... xi} 的和为n-m,可能再次出现m,因此是(n-m)的m划分,因此这种划分

                     个数为f(n-m, m);

               (b). 划分中不包含m的情况,则划分中所有值都比m小,即n的(m-1)划分,个数为f(n,m-1);

              因此 f(n, m) = f(n-m, m)+f(n,m-1);

 

         综合以上情况,我们可以看出,上面的结论具有递归定义特征,其中(1)和(2)属于回归条件,(3)和(4)属于特殊情况,将会转换为情况(5)。而情况(5)为通用情况,属于递推的方法,其本质主要是通过减小m以达到回归条件,从而解决问题。其递推表达式如下:

         f(n, m)=       1;                                (n=1 or m=1)

                            f(n, n);                         (n<m)

                            1+ f(n, m-1);                (n=m)

                            f(n-m,m)+f(n,m-1);       (n>m)

代码如下

#include<stdio.h>
int f(int k,int s)
{
 if(k==1||s==1) return 1;
 if(k==s) return 1+f(k,s-1);
 if(k<s) return f(k,k);
 if(k>s) return f(k-s,s)+f(k,s-1);
}
int main()
{
	int n,m,t;
scanf("%d",&n);
while(n--)
{
	scanf("%d",&m);
	t=f(m,m);
	printf("%d\n",t);
}
	return 0;}

整数划分(二)  这个也可以用数组保存起来,来节省时间。。

#include<stdio.h>
int f(int k,int s)
{
 if(k==1||s==1||k==0) return 1;
 if(k==s) return 1+f(k,s-1);
 if(k<s) return f(k,k);
 if(k>s) return f(k-s,s)+f(k,s-1);
}
int main()
{
	int n,m,p,t;
scanf("%d",&n);
while(n--)
{
	scanf("%d%d",&m,&p);
	t=f(m-p,p);//注意此处与上面代码的区别
	printf("%d\n",t);
}
	return 0;
}    

虽然AC了,但无奈的是时间太长了。。而且此代码稍加改动后交到  对花的烦恼(二)上面直接超时抓狂

比较下面这个代码与第二个的区别

首先 定义f ( i , j )为整数  i  分成 j  个整数 的情况
经过分析可得f(i, j )可转化为两个部分:
一:  假设 分成的  j  个整数中 不包含1。。那么 此时 f (i-j,j)就是这部分的总情况,既然想让他不包含1,就先将j个整数都分为1,此时i变为i-j,再将i分为j个整数,这j个整数再加上原先分的1,就肯定不会再有1出现了。如果i-j<j的话,f (i-j,j)的值为0
二: 假设分成的j个整数至少有一个1。。那么此时f(i-1,j-1)

#include<stdio.h>
int p(int n,int k)\\思想类似于把n个苹果放到k个盘子里
{
if(n<k) return 0;
else if(k==1||k==n)return 1;
else return p(n-1,k-1)+p(n-k,k);
}
int main()
{
   int n,k,t,s;
scanf("%d",&t);	
while (t--) 
{
scanf("%d%d",&n,&k);
s=p(n,k);
printf("%d\n",s);
}
return 0;
}

用数组把计算过的结果保存起来,避免重复计算,来节省时间大笑 队花的烦恼二时间就为0了.。。

#include<stdio.h>
int p[505][10];
int f(int m,int n)
{
    if(p[m][n]!=0)
    return p[m][n];
	if(m==1||n==1)
		return 1;
	if(m==n)
		return p[m][n]=f(m,n-1)+1;
	if(m<n)
		return p[m][n]=f(m,m);
	else
		return p[m][n]=f(m,n-1)+f(m-n,n);
}
int main()
{
	int m,n;
	while( scanf("%d%d",&m,&n)!=EOF)
	{    printf("%d\n",f(m-n,n));
	}
	return 0;
}

先打表存到数组里面

 
#include<stdio.h>
int main()
{
	int a,b,n,m,k;
	int ok[105][105]={0};
	ok[1][1]=1;
	for(a=2;a<=100;a++)
	{
		for(b=1;b<=a;b++)
			ok[a][b]=ok[a-b][b]+ok[a-1][b-1];
	}
	scanf("%d",&k);
	while(k--)
	{
		scanf("%d%d",&n,&m);
		printf("%d\n",ok[n][m]);
	}
}        



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
x1y2 x2y3 x3y1-x1y3-x2y1-x3y2 是计算三角形面积的公式中的一部分。 在这个公式中,x1、x2、x3分别表示三角形的三个顶点的x坐标,y1、y2、y3分别表示三角形的三个顶点的y坐标。通过计算这个表达式的值,可以得到三角形的面积。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [TetraCluster:使用并行Java 2库的Java并行程序。 该程序在群集并行计算机上运行,​​以从给定的点集中找到...](https://download.csdn.net/download/weixin_42171208/18283141)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [线性代数有个题,求正交变换x=Qy,化次型f(x1,x2,x3)=8x1x2+8x1x3+8x2x3为标准型求出特征值](https://blog.csdn.net/weixin_39956182/article/details/115882118)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [nyoj-67-三角形面积(S=(1/2)*(x1y2+x2y3+x3y1-x1y3-x2y1-x3y2))](https://blog.csdn.net/weixin_30492601/article/details/99541033)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值