1. 创新与工作主要内容
创新点总结
本文提出了一个大规模的多领域白血病数据集,专注于具有形态学属性的白细胞(WBC)检测,以提高白血病的早期诊断率。创新之处在于使用不同成本范围的两种显微镜(高成本显微镜HCM和低成本显微镜LCM)以及不同分辨率(100x、40x、10x)和传感器来收集数据,这增加了数据集的多样性和现实世界应用的泛化能力。此外,本文还提出了一种新的多头部对象检测方法,称为AttriDet,它不仅能够检测WBC的类型,还能预测它们的形态学属性,从而为白血病的预后提供可解释的辅助意见。
摘要部分翻译
标题:A Large-scale Multi Domain Leukemia Dataset for the White Blood Cells Detection with Morphological Attributes for Explainability
摘要:早期诊断白血病每年可以挽救数千人的生命。没有白细胞(WBC)的形态学信息,白血病的预后是具有挑战性的,并且依赖于昂贵的显微镜和血液学家分析外周血样(PBS)的可用性。深度学习方法可以被用来辅助血液学家。然而,这些算法需要大量的标记数据,而这些数据并不容易获得。为了克服这个限制,我们获取了一个现实、通用且大规模的数据集。为了收集这个全面的数据集以用于现实世界的应用,我们使用了两种不同成本范围的显微镜(高成本:HCM和低成本:LCM)在三种放大倍数(100x、40x、10x)下通过不同的传感器(HCM的高端相机,LCM的中档相机和两者的手机相机)进行数