本文中所有的数据集均为:公共数据集,不涉及侵占隐私,如果侵权,请与我联系!
医学图像目标检测数据集主要由两部分组成:(1)标准目标检测任务中的数据集,即数据集本身有标注框。(2)医学分割数据集的mask标注转换成目标检测框。
本文中部分数据集来源为:roboflow.com,一个做目标检测项目的数据集库。
打一个广告:如果需要买现成的文中数据集或者想做关于医学图像数据转换,医学图像病灶分类,分割,检测。半监督,弱监督,自监督,对比学习,医学图像多模态等实验,方法。请加咸鱼:张小雨333
目录
1、RSNA Pneumonia Detection Challenge (2018)
一:肺炎数据集
1、RSNA Pneumonia Detection Challenge (2018)
原始数据集Link:RSNA Pneumonia Detection Challenge (2018)
RSNA Pneumonia Detection Challenge(2018年)是由放射学会国家联盟(Radiological Society of North America,简称RSNA)发起的一项挑战,旨在促进和加速肺炎自动检测的研究。该挑战提供了一个公开的数据集,包含了大约30,000名患者的胸部X射线图像,这些图像被标记为是否患有肺炎。数据集中的图像是从多个不同的医疗中心收集而来,涵盖了多种不同的X射线成像系统和设备。
处理好后的带有肺炎标注的VOC目标检测数据集图像总数为6012张,类型标签为病灶区域。
2、SIIM-FISABIO-RSNA COVID-19
数据集相关信息Link:SIIM-FISABIO-RSNA COVID-19 Detection
SIIM-FISABIO-RSNA COVID-19数据集是一个专门为了应对COVID-19大流行而创建的医学影像数据集。这个数据集由放射学会国家联盟(RSNA)、放射学影像学会(SIIM)和西班牙生物医学成像联合会(FISABIO)联合发起,旨在促进全球研究者对COVID-19相关肺部病变的理解和研究。该数据集收集了来自不同医疗中心的胸部CT图像,包括确诊为COVID-19的患者以及对照组的图像。这些图像经过去标识化处理,以保护患者隐私。数据集中的图像被标注了是否存在COVID-19相关的肺部病变,以及病变的位置和类型&#