医学图像影像目标检测数据集汇总

本文介绍了医学图像领域的几个关键数据集,包括肺炎、脑部(如TCGA和Brats2018)、息肉(如ClinicDB和ColonDB)和细胞类(如红细胞和神经细胞)数据集。这些数据集可用于目标检测、病灶分类、分割和深度学习研究,如半监督、弱监督和自监督学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文中所有的数据集均为:公共数据集,不涉及侵占隐私,如果侵权,请与我联系!

医学图像目标检测数据集主要由两部分组成:(1)标准目标检测任务中的数据集,即数据集本身有标注框。(2)医学分割数据集的mask标注转换成目标检测框。

本文中部分数据集来源为:roboflow.com,一个做目标检测项目的数据集库。

打一个广告:如果需要买现成的文中数据集或者想做关于医学图像数据转换,医学图像病灶分类,分割,检测。半监督,弱监督,自监督,对比学习,医学图像多模态等实验,方法。请加咸鱼:张小雨333

目录

一:肺炎数据集

1、RSNA Pneumonia Detection Challenge (2018)

2、SIIM-FISABIO-RSNA COVID-19

 3、天池CT肺部数据集

二:脑部数据集

1、TCGA

2、Brats2018多模态脑部数据集

3、Brain-tumor

三、息肉数据集

四、细胞类数据集

1、红细胞数据集

2、神经细胞数据集

 五、乳腺结节检测数据集


一:肺炎数据集

1、RSNA Pneumonia Detection Challenge (2018)

原始数据集Link:RSNA Pneumonia Detection Challenge (2018)

RSNA Pneumonia Detection Challenge(2018年)是由放射学会国家联盟(Radiological Society of North America,简称RSNA)发起的一项挑战,旨在促进和加速肺炎自动检测的研究。该挑战提供了一个公开的数据集,包含了大约30,000名患者的胸部X射线图像,这些图像被标记为是否患有肺炎。数据集中的图像是从多个不同的医疗中心收集而来,涵盖了多种不同的X射线成像系统和设备。

处理好后的带有肺炎标注的VOC目标检测数据集图像总数为6012张,类型标签为病灶区域。

2、SIIM-FISABIO-RSNA COVID-19

数据集相关信息Link:SIIM-FISABIO-RSNA COVID-19 Detection

SIIM-FISABIO-RSNA COVID-19数据集是一个专门为了应对COVID-19大流行而创建的医学影像数据集。这个数据集由放射学会国家联盟(RSNA)、放射学影像学会(SIIM)和西班牙生物医学成像联合会(FISABIO)联合发起,旨在促进全球研究者对COVID-19相关肺部病变的理解和研究。该数据集收集了来自不同医疗中心的胸部CT图像,包括确诊为COVID-19的患者以及对照组的图像。这些图像经过去标识化处理,以保护患者隐私。数据集中的图像被标注了是否存在COVID-19相关的肺部病变,以及病变的位置和类型&#

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张小雨33333

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值