[翻译]Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuou

差分进化(DE)是一种针对非线性、不可微分问题的全局优化算法,以其快速收敛和简单控制变量而备受青睐。DE通过随机变异、交叉和选择策略在连续空间中寻找最优解,能有效避免局部最小值。与其他优化方法比较,DE在多数情况下表现出更好的性能。DE算法的自组织特性、鲁棒控制变量和良好的收敛性使其在实际应用中展现出巨大潜力。
摘要由CSDN通过智能技术生成

差分进化——一种在连续空间寻找整体最优解的简单有效的启发式算法

(机翻+自己修改)
摘要:
一种最大限度地最小化非线性和不可微的连续空间函数的启发式算法。有更快的收敛速度,需要控制的变量也很少。

关键词:
随机优化,非线性优化,全局优化,遗传算法,进化策略。

1.介绍

涉及连续空间的全局优化的问题在整个科学界普遍存在。一般来说,任务是通过适当地选择系统参数优化某些系统的性质。为了方便起见,系统的参数通常表示为向量。

当成本函数是非线性和不可微分的时,直接搜索方法是选择的方法。其中知名的有遗传算法和进化策略。直接搜索方法的核心是引起参数向量变化的策略。一但变异发生,就必须做出是否接受这个新推导出的参数的决定,大多数直接搜索方法使用贪心策略来做这个决定。根据贪婪策略,接受新生成的参数向量只有当它降低了成本函数的价值。虽然贪婪策略的过程收敛相当快,但它存在被困在局部最小值的风险。
拥有平行搜索技术如遗传算法和进化策略具有一些内置的保护措施,可以防止提前汇聚于局部最小值,通过同时运行几个向量,优秀的参数配置可以帮助其他向量逃避局部最小值。另一种使参数向量逃离局部最小值的方法是模拟退火(放宽贪婪策略,偶尔可以允许上坡(去往非更小值的地方)的行为)。这种移动潜在地允许参数向量爬出局部最小。 并且随着迭代次数的增加,接受向上移动的概率减小。长远来看,也还是满足贪婪策略。
这些直接搜索算法最主要的都是随机改变,是最简单的进化算法,退火算法和遗传算法都有人尝试过了,用户一般要求实际最小化技术应满足这几个要求:

微分进化(Differential Evolution,DE)是一种实际的全局优化方法。它是一种演化算法,源于遗传算法和进化策略。与其他优化算法相比,DE具有以下几个特点。 首先,DE具有较强的全局搜索能力。它使用一种个体的差异来引导搜索过程,通过对个体进行随机的变异和交叉操作,使搜索过程能够逃离局部最优解,进而实现对全局最优解的搜索。 其次,DE的算法过程简单易实现。DE算法的基本操作包括选择、变异和交叉,其中变异和交叉操作是DE的核心。变异通过引入随机扰动来产生新的解向量,而交叉则通过比较两个解向量的差异来生成新的解向量。这种简单直观的操作使得DE具有较低的计算复杂性和较高的实用性。 此外,DE还能够处理高维、非线性和非光滑的优化问题。由于DE采用人工进化的思想,不需要对优化问题进行特定的假设和约束,因此能够适应不同类型的问题。它可以很好地解决实际问题中存在的多个局部最优解和约束条件的情况,具有较强的自适应性和鲁棒性。 最后,DE在实际应用中具有广泛的适用性。DE已经成功应用于多个领域,如工程设计、信号处理、金融建模等。通过结合DE和其他优化算法,可以提高优化过程的效率和准确性,为实际问题提供有效的解决方案。 综上所述,微分进化是一种实用的全局优化方法,具有全局搜索能力强、算法过程简单、能处理复杂问题和广泛适用等特点。随着计算能力的不断提高和应用需求的增加,DE将在更多实际问题中发挥重要作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值