D. GCD Counting
寻找gcd不为1的最长路径
注意到一个数的质因子的数量不多,可以直接做树形dp
让质因子按需排列,然后双指针进行状态转移即可。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
typedef unsigned long long ull;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define mem(a) memset(a,0,sizeof(a))
const int maxn=2e5+15;
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
int n,m;
int pri[maxn];
int tot;
bool vis[maxn];
void init(){
for(int i=2;i<maxn;i++){
if(vis[i])continue;
pri[tot++]=i;
for(int j=i+i;j<maxn;j+=i){
vis[j]=1;
}
}
}
vector<int> e[maxn];
int a[maxn];
vector<int> pp[maxn];
vector<int> dp[maxn];
void work(int id,int num){
for(int i=0;i<tot&&pri[i]*pri[i]<=num;i++){
if(num%pri[i]==0){
pp[id].pb(pri[i]);
while(num%pri[i]==0)num/=pri[i];
}
}
if(num>1)pp[id].pb(num);
dp[id].resize(pp[id].size());
}
int ans;
void dfs(int u,int fa){
int siz=pp[u].size();
for(int i=0;i<siz;i++){
dp[u][i]=1;
}
for(auto v:e[u]){
if(v==fa)continue;
dfs(v,u);
int ia=0,ib=0;
while(ia<pp[u].size()&&ib<pp[v].size()){
if(pp[u][ia]<pp[v][ib])ia++;
else if(pp[u][ia]>pp[v][ib])ib++;
else{
ans=max(ans,dp[u][ia]+dp[v][ib]);
dp[u][ia]=max(dp[u][ia],dp[v][ib]+1);
ia++;
ib++;
}
}
}
}
int main(){
init();
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
work(i,a[i]);
if(a[i]>1)ans=1;
}
for(int i=1,aa,bb;i<n;i++){
scanf("%d%d",&aa,&bb);
e[aa].pb(bb);
e[bb].pb(aa);
}
dfs(1,1);
printf("%d\n",ans);
return 0;
}
F. Trucks and Cities
用DP维护出从i到j加k次油,加油间距离最大值的最小化。
然后发现固定i、j后,dp是满足决策单调性的,就可以n^3求了
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
typedef unsigned long long ull;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
const int maxn=400+5;
const int maxe=4e5+15;
const int mod=1e9+7;
int n,m;
int a[maxn];
int dp[maxn][maxn];
struct node{
int f,c,r;
node(){}
node(int bb,int cc,int dd){
f=bb;c=cc;r=dd;
}
};
vector<node> vec[maxn];
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
ll ans=0;
for(int i=0,a,b,c,d;i<m;i++){
scanf("%d%d%d%d",&a,&b,&c,&d);
vec[a].pb(node(b,c,d));
}
for(int i=1;i<=n;i++){
if(vec[i].size()==0)continue;
for(int j=i+1;j<=n;j++){
dp[j][0]=a[j]-a[i];
int pos=i;
for(int k=1;k<=n;k++){
dp[j][k]=a[j]-a[i];
while(pos+1<=j&&dp[pos+1][k-1]<a[j]-a[pos+1])pos++;
dp[j][k]=min(dp[pos+1][k-1],a[j]-a[pos]);
}
}
for(auto v:vec[i]){
ans=max(ans,1ll*v.c*dp[v.f][v.r]);
}
}
printf("%lld\n",ans);
return 0;
}
G. (Zero XOR Subset)-less
数组分组,使得任意子集异或不为0
需要利用到线性基的性质
数字的数量大于线性基的基底数量,则一定能异或出0,所以最多划分成基底数量个分组,需特判所有数异或和为0的情况。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
typedef unsigned long long ull;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
const int maxn=1000+15;
const int maxe=1e5+15;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
int n;
int p[40];
int main(){
scanf("%d",&n);
int dd=0;
for(int i=0,a;i<n;i++){
scanf("%d",&a);
dd^=a;
for(int j=31;j>=0;j--){
if(!(a>>j))continue;
if(!p[j]){p[j]=a;break;}
else a^=p[j];
}
}
int cc=0;
for(int i=0;i<=31;i++){
if(p[i])cc++;
}
if(dd==0)cc=-1;
printf("%d",cc);
return 0;
}