常见CT伪影类型

本文详细介绍了CT图像中的几种典型伪影,包括条状、阴影、环状和带状伪影,以及它们的形成原因,如X光管相关问题、探测器缺陷、金属影响、射束硬化等。通过理解这些伪影,有助于提高CT图像的解读和诊断准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 伪影常见形态

CT伪影的表现形态主要有条状、阴影、环状和带状四种形式。

1.1 条状伪影

条状伪影主要表现为横穿图像的明、暗条纹,一个条纹通常由孤立测量中的不一致性引起。滤波反投影将投影空间中的每个数据点映射到图像域中的一条直线,相邻的直线间正负贡献的组合使最终图像中不出现直线。当投影数据集合中出现不一致性时,重建过程不能将正负贡献合适地组合,则出现了直线或条纹。

1.2 阴影 

阴影伪影经常出现在高对比度物质附近,或明或暗,阴影伪影产生的原因也是投影测量中的不一致性,不像条状伪影,阴影是由偏离真实测量结果的一组通道或投影观测导致的,阴影伪影可以是局部或者影响整个图像。

 1.3 环状和带状伪影

叠加在原始图像上的环或带

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陶陶小哈尼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值