ASCLL 文本图形
步骤:
- 将输入图像转成灰度;
- 将图像分成 M×N 个小块;
- 修正 M(行数),以匹配图像和字体的横纵比;
- 计算每个小块图像的平均亮度,然后为每个小块查找合适的 ASCII 字符;
- 汇集各行 ASCII 字符串,将它们打印到文件,形成最终图像。
所需模块
这个项目将使用 Pillow(Python 图像库的友好分支)来读取图像,访问它们的底层数据,创建并修改它们。还将使用 numpy 库来计算平均值。
代码
开始先定义灰度等级,用于生成 ASCII 文本图形。然后,考虑如何将图像分割成小块,以及如何计算这些小块的平均亮度。接下来,用 ASCII 字符替换小块,生成最终的输出。最后,为程序设置命令行解析,允许用户指定输出尺寸、输出文件名,等等。
定义灰度等级和网格
创建程序的第一步是,先定义两种灰度等级作为全局值,用于将亮度值转换为ASCII 字符。
#70 级的灰度梯度
gscale1 = "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_+~<>i!lI;:,\"^ `". "
#简单的 10 级灰度梯度
gscale2 = "@%#*+=-:. "
这两个值保存为字符串,包含一组字符串,从最黑暗变到最亮。
既然有了灰度梯度,就可以准备图像。下面的代码打开图像,并分割成网格:
#Image.open()打开输入图像文件,Image.convert()将该图像转换为灰度图像。“L”代表 luminance,是图像亮度的单位。
image = Image.open(fileName).convert("L")
#保存输入图像的宽度和高度
W, H = image.size[0], image.size[1]
#根据用户指定的列数(cols),计算小块的宽度(如果用户没有在命令行中设置其他值,程序默认使用 80 列)
w = W/cols
#利用垂直比例系数(作为 scale 传入),计算它的高度
h = w/scale
#用这个网格高度来计算行数。
rows = int(H/h)
计算平均亮度
接下来,计算灰度图像中每一小块的平均亮度。函数 getAverageL()完成这项工作:
#图像小块作为 PIL Image 对象传入
def getAveragel(image):
#将 image 转换成一个 numpy数组,此时 im 成为一个二维数组,包含每个像素的亮度
im = np.array(image)
#保存该图像的尺寸(宽度和高度)
w,h = im.shape
#计算该图像中的亮度平均值
return np.average(im.reshape(w*h))
用 numpy.reshape()先将维度为宽和高(w,h)的二维数组转换成扁平的一维,其长度
是宽度乘以高度(w*h)。然后 numpy.average()调用对这些数组值求和并计算平均值。
从图像生成 ASCII 内容
程序的主要部分负责从图像生成 ASCII 内容:
#初始化
aimg = []
for j in range(rows):
#计算每个图像小块的起始和结束 y 坐标
y1 = int(j*h)
y2 = int((j+1)*h)
if j == rows-1:
y2 = H
#为 ASCII 图像添加一个空字符串,作为一种紧凑的方式来表示图像的当前行
aimg.append("")
for i in range(cols):
#计算每个小块的左、右 x 坐标
x1 = int(i*w)
x2 = int((i+1)*w)
#为最后一小块校正 x 坐标
if i == cols-1:
x2 = W
#提取图像小块,然后将该小块传入 getAverageL()函数
img = image.crop((x1, y1, x2, y2))
avg = int(getAveragel(img))
if moreLevels:
gsval = gscale1[int((avg*69)/255)]
else:
gsval = gscale2[int((avg*9)/255)]
#在文本行中添加找到的 ASCII 值 gsval,代码循环,直到处理完所有行
aimg[j] += gsval
命令行选项
接下来,为程序定义一些命令行选项。这段代码使用内置的 argparse 类:
parser = argparse.ArgumentParser(description="descStr")
#包含指定图像文件输入的选项(唯一必须的参数)
parser.add_argument('--file', dest='imgFile', required=True)
#设置垂直比例因子
parser.add_argument('--scale', dest='scale', required=False)
#设置输出文件名
parser.add_argument('--out', dest='outFile', required=False)
#设置 ASCII 输出中的文本列数
parser.add_argument('--cols', dest='cols', required=False)
#添加--morelevels 选项,让用户选择更多层次的灰度梯度
parser.add_argument('--morelevels', dest='moreLevels', action='store_true')
将 ASCII 文本图形字符串写入文本文件
最后,将生成的 ASCII 字符串列表,写入一个文本文件:
#使用内置的 open()方法,打开一个新的文本文件用于写入
f = open(outFile, 'w')
#迭代遍历列表中的每个字符串,将它写入文件
for row in aimg:
f.write(row + '\n')
#关闭文件对象,释放系统资源。
f.close()
完整代码
下面是完整的 ASCII 文本图形程序,也可以下载
import sys, random, argparse
import numpy as np
import math
from PIL import Image
#70 级的灰度梯度
gscale1 = "$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_+~<>i!lI;:,\"^`'. "
#简单的 10 级灰度梯度
gscale2 = "@%#*+=-:. "
#Image.open()打开输入图像文件,Image.convert()将该图像转换为灰度图像。“L”代表 luminance,是图像亮度的单位。
#image = Image.open(fileName).convert("L")
#保存输入图像的宽度和高度
#W, H = image.size[0], image.size[1]
#根据用户指定的列数(cols),计算小块的宽度(如果用户没有在命令行中设置其他值,程序默认使用 80 列)
#w = W/cols
#利用垂直比例系数(作为 scale 传入),计算它的高度
#h = w/scale
#用这个网格高度来计算行数。
#rows = int(H/h)
#图像小块作为 PIL Image 对象传入
def getAveragel(image):
#将 image 转换成一个 numpy数组,此时 im 成为一个二维数组,包含每个像素的亮度
im = np.array(image)
#保存该图像的尺寸(宽度和高度)
w,h = im.shape
#计算该图像中的亮度平均值
return np.average(im.reshape(w*h))
def covertImageToAscii(fileName, cols, scale, moreLevels):
global gscale1, gscale2
image = Image.open(fileName).convert('L')
W, H = image.size[0], image.size[1]
print("input image dims: %d x %d" % (W, H))
w = W/cols
h = w/scale
rows = int(H/h)
print("cols: %d, rows: %d" % (cols, rows))
print("tile dims: %d x %d" % (w, h))
if cols > W or rows > H:
print("Image too small for specified cols!")
exit(0)
#初始化
aimg = []
for j in range(rows):
#计算每个图像小块的起始和结束 y 坐标
y1 = int(j*h)
y2 = int((j+1)*h)
if j == rows-1:
y2 = H
#为 ASCII 图像添加一个空字符串,作为一种紧凑的方式来表示图像的当前行
aimg.append("")
for i in range(cols):
#计算每个小块的左、右 x 坐标
x1 = int(i*w)
x2 = int((i+1)*w)
#为最后一小块校正 x 坐标
if i == cols-1:
x2 = W
#提取图像小块,然后将该小块传入 getAverageL()函数
img = image.crop((x1, y1, x2, y2))
avg = int(getAveragel(img))
if moreLevels:
gsval = gscale1[int((avg*69)/255)]
else:
gsval = gscale2[int((avg*9)/255)]
#在文本行中添加找到的 ASCII 值 gsval,代码循环,直到处理完所有行
aimg[j] += gsval
return aimg
def main():
descStr = "This program converts an image into ASCII art."
parser = argparse.ArgumentParser(description="descStr")
#包含指定图像文件输入的选项(唯一必须的参数)
parser.add_argument('--file', dest='imgFile', required=True)
#设置垂直比例因子
parser.add_argument('--scale', dest='scale', required=False)
#设置输出文件名
parser.add_argument('--out', dest='outFile', required=False)
#设置 ASCII 输出中的文本列数
parser.add_argument('--cols', dest='cols', required=False)
#添加--morelevels 选项,让用户选择更多层次的灰度梯度
parser.add_argument('--morelevels', dest='moreLevels', action='store_true')
args = parser.parse_args()
imgFile = args.imgFile
outFile = 'out.txt'
if args.outFile:
outFile = args.outFile
scale = 0.43
if args.scale:
scale = float(args.scale)
cols = 80
if args.cols:
cols = int(args.cols)
print('generating ASCII art...')
aimg = covertImageToAscii(imgFile, cols, scale, args.moreLevels)
#使用内置的 open()方法,打开一个新的文本文件用于写入
f = open(outFile, 'w')
#迭代遍历列表中的每个字符串,将它写入文件
for row in aimg:
f.write(row + '\n')
#关闭文件对象,释放系统资源。
f.close()
print("ASCII art written to %s" % outFile)
if __name__ == '__main__':
main()
运行 ASCII 文本图形生成程序
要运行编写好的程序,输入类似下面这样的命令,将 data/robot.jpg 替换为你想使用的图像文件的相对路径:
python ascii.py --file data/robot.jpg --cols 100