题目描述
如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。
输入输出格式
输入格式:
第一行包含三个正整数N、M、S,分别表示树的结点个数、询问的个数和树根结点的序号。
接下来N-1行每行包含两个正整数x、y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树)。
接下来M行每行包含两个正整数a、b,表示询问a结点和b结点的最近公共祖先。
输出格式:
输出包含M行,每行包含一个正整数,依次为每一个询问的结果。
输入输出样例
5 5 4 3 1 2 4 5 1 1 4 2 4 3 2 3 5 1 2 4 5
4 4 1 4 4
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=10,M<=10
对于70%的数据:N<=10000,M<=10000
对于100%的数据:N<=500000,M<=500000
样例说明:
该树结构如下:
第一次询问:2、4的最近公共祖先,故为4。
第二次询问:3、2的最近公共祖先,故为4。
第三次询问:3、5的最近公共祖先,故为1。
第四次询问:1、2的最近公共祖先,故为4。
第五次询问:4、5的最近公共祖先,故为4。
故输出依次为4、4、1、4、4。
题解:
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
using namespace std;
const int maxn=1000001;
int n,m,s,x,y,root,a,b;
int f[maxn][20];
int deep[maxn],head[maxn];
int num=1;
struct node{
int from;
int to;
int next;
}edge[maxn];//邻接表
void step()
{
for(int i=1;i<=19;i++)
for(int j=1;j<=n;j++)
{
f[j][i]=f[f[j][i-1]][i-1];//从第j个点开始,跳2的i次方
}
}
void build_tree(int p)
{
for(int i=head[p];i!=-1;i=edge[i].next)//不断旋转递推
{
int will=edge[i].to;
if(deep[will]==0)
{
deep[will]=deep[p]+1;
f[will][0]=p;
build_tree(will);
}
}
}
void add(int x,int y)
{
edge[num].from=x;
edge[num].to=y;
edge[num].next=head[x];//把当前位置指向前一个节点
head[x]=num++;
}
int lca(int x,int y)
{
if(deep[x]<deep[y]) swap(x,y);
for(int i=19;i>=0;i--)
{
if(deep[f[x][i]]>=deep[y])
x=f[x][i];
}//确定两点在同一高度
if(x==y) return y;//相同
for(int i=19;i>=0;i--)
if(f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
return f[x][0];
}
void read(int &x)
{ char c=getchar(); x=0;
while(c>'9'||c<'0') c=getchar();
while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();//读入优化
}
int main()
{
read(n);read(m);read(root);
for(int i=0;i<=n;i++)
head[i]=-1;
for(int i=1;i<=n-1;i++)
{
read(a);read(b);
add(a,b);
add(b,a);
}
deep[root]=1;
build_tree(root);
step();
for(int i=1;i<=m;i++)
{
read(x);read(y);
printf("%d\n",lca(x,y));
}
}