题目地址:
https://www.luogu.com.cn/problem/P3379
题目描述:
如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。
输入格式:
第一行包含三个正整数
N
,
M
,
S
N,M,S
N,M,S,分别表示树的结点个数、询问的个数和树根结点的序号。接下来
N
−
1
N-1
N−1行每行包含两个正整数
x
,
y
x,y
x,y,表示
x
x
x结点和
y
y
y结点之间有一条直接连接的边(数据保证可以构成树)。接下来
M
M
M行每行包含两个正整数
a
,
b
a,b
a,b,表示询问
a
a
a结点和
b
b
b结点的最近公共祖先。
输出格式:
输出包含
M
M
M行,每行包含一个正整数,依次为每一个询问的结果。
法1:倍增。参考https://blog.csdn.net/qq_46105170/article/details/116217633。代码如下:
#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;
const int N = 5e5 + 10, M = N << 1;
int n, m, qu, root;
int h[N], e[M], ne[M], idx;
int dep[N], f[N][25];
int q[N];
void add(int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
void bfs() {
memset(dep, -1, sizeof dep);
dep[root] = 0;
int hh = 0, tt = 0;
q[tt++] = root;
while (hh < tt) {
int t = q[hh++];
for (int i = h[t]; ~i; i = ne[i]) {
int v = e[i];
if (dep[v] == -1) {
dep[v] = dep[t] + 1;
q[tt++] = v;
f[v][0] = t;
for (int k = 1; 1 << k <= dep[v]; k++)
f[v][k] = f[f[v][k - 1]][k - 1];
}
}
}
}
int lca(int a, int b) {
if (dep[a] < dep[b]) swap(a, b);
for (int k = 0, diff = dep[a] - dep[b]; 1 << k <= diff; k++)
if (diff >> k & 1)
a = f[a][k];
if (a == b) return a;
for (int k = log2(dep[a]); k >= 0; k--)
if (f[a][k] != f[b][k])
a = f[a][k], b = f[b][k];
return f[a][0];
}
int main() {
memset(h, -1, sizeof h);
scanf("%d%d%d", &n, &qu, &root);
for (int i = 1; i <= n - 1; i++) {
int a, b;
scanf("%d%d", &a, &b);
add(a, b), add(b, a);
}
bfs();
for (int i = 0; i < qu; i++) {
int a, b;
scanf("%d%d", &a, &b);
printf("%d\n", lca(a, b));
}
return 0;
}
预处理时间复杂度 O ( n log n ) O(n\log n) O(nlogn),每次询问时间复杂度 O ( log n ) O(\log n) O(logn),空间 O ( n log n ) O(n\log n) O(nlogn)(这里的空间主要是 f f f数组的空间), n n n是顶点数。
法2:树链剖分。思路参考https://blog.csdn.net/qq_46105170/article/details/125520453。代码如下:
#include <iostream>
#include <cstring>
using namespace std;
const int N = 5e5 + 10, M = N << 1;
int n, qu;
int h[N], e[M], ne[M], idx;
int dep[N], son[N], top[N], sz[N], fa[N];
int root;
void add(int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
void dfs1(int u, int from, int depth) {
dep[u] = depth, sz[u] = 1, fa[u] = from;
for (int i = h[u]; ~i; i = ne[i]) {
int v = e[i];
if (v == from) continue;
dfs1(v, u, depth + 1);
sz[u] += sz[v];
if (sz[son[u]] < sz[v]) son[u] = v;
}
}
void dfs2(int u, int from, int t) {
top[u] = t;
if (!son[u]) return;
dfs2(son[u], u, t);
for (int i = h[u]; ~i; i = ne[i]) {
int v = e[i];
if (v == son[u] || v == from) continue;
dfs2(v, u, v);
}
}
int lca(int u, int v) {
while (top[u] != top[v]) {
// 谁的重链头深度深,谁就向上跳
if (dep[top[u]] < dep[top[v]]) swap(u, v);
u = fa[top[u]];
}
return dep[u] < dep[v] ? u : v;
}
int main() {
memset(h, -1, sizeof h);
scanf("%d%d%d", &n, &qu, &root);
for (int i = 1; i <= n - 1; i++) {
int a, b;
scanf("%d%d", &a, &b);
add(a, b), add(b, a);
}
dfs1(root, -1, 0);
dfs2(root, -1, root);
for (int i = 0; i < qu; i++) {
int a, b;
scanf("%d%d", &a, &b);
printf("%d\n", lca(a, b));
}
}
预处理时间复杂度 O ( n ) O(n) O(n),每次询问 O ( log n ) O(\log n) O(logn),空间 O ( n ) O(n) O(n), n n n是顶点数。