【洛谷】P3379 【模板】最近公共祖先(LCA)

题目地址:

https://www.luogu.com.cn/problem/P3379

题目描述:
如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。

输入格式:
第一行包含三个正整数 N , M , S N,M,S N,M,S,分别表示树的结点个数、询问的个数和树根结点的序号。接下来 N − 1 N-1 N1行每行包含两个正整数 x , y x,y x,y,表示 x x x结点和 y y y结点之间有一条直接连接的边(数据保证可以构成树)。接下来 M M M行每行包含两个正整数 a , b a,b a,b,表示询问 a a a结点和 b b b结点的最近公共祖先。

输出格式:
输出包含 M M M行,每行包含一个正整数,依次为每一个询问的结果。

法1:倍增。参考https://blog.csdn.net/qq_46105170/article/details/116217633。代码如下:

#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;

const int N = 5e5 + 10, M = N << 1;
int n, m, qu, root;
int h[N], e[M], ne[M], idx;
int dep[N], f[N][25];
int q[N];

void add(int a, int b) {
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

void bfs() {
    memset(dep, -1, sizeof dep);
    dep[root] = 0;
    int hh = 0, tt = 0;
    q[tt++] = root;
    while (hh < tt) {
        int t = q[hh++];
        for (int i = h[t]; ~i; i = ne[i]) {
            int v = e[i];
            if (dep[v] == -1) {
                dep[v] = dep[t] + 1;
                q[tt++] = v;
                f[v][0] = t;
                for (int k = 1; 1 << k <= dep[v]; k++) 
                    f[v][k] = f[f[v][k - 1]][k - 1];
            }
        }
    }
}

int lca(int a, int b) {
    if (dep[a] < dep[b]) swap(a, b);
    for (int k = 0, diff = dep[a] - dep[b]; 1 << k <= diff; k++)
        if (diff >> k & 1)
            a = f[a][k];

    if (a == b) return a;

    for (int k = log2(dep[a]); k >= 0; k--)
        if (f[a][k] != f[b][k])
            a = f[a][k], b = f[b][k];
    
    return f[a][0];
}

int main() {
    memset(h, -1, sizeof h);

    scanf("%d%d%d", &n, &qu, &root);
    for (int i = 1; i <= n - 1; i++) {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b), add(b, a);
    }

    bfs();

    for (int i = 0; i < qu; i++) {
        int a, b;
        scanf("%d%d", &a, &b);
        printf("%d\n", lca(a, b));
    }

    return 0;
}

预处理时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn),每次询问时间复杂度 O ( log ⁡ n ) O(\log n) O(logn),空间 O ( n log ⁡ n ) O(n\log n) O(nlogn)(这里的空间主要是 f f f数组的空间), n n n是顶点数。

法2:树链剖分。思路参考https://blog.csdn.net/qq_46105170/article/details/125520453。代码如下:

#include <iostream>
#include <cstring>
using namespace std;

const int N = 5e5 + 10, M = N << 1;
int n, qu;
int h[N], e[M], ne[M], idx;
int dep[N], son[N], top[N], sz[N], fa[N];
int root;

void add(int a, int b) {
  e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

void dfs1(int u, int from, int depth) {
  dep[u] = depth, sz[u] = 1, fa[u] = from;
  for (int i = h[u]; ~i; i = ne[i]) {
    int v = e[i];
    if (v == from) continue;
    dfs1(v, u, depth + 1);
    sz[u] += sz[v];
    if (sz[son[u]] < sz[v]) son[u] = v;
  }
}

void dfs2(int u, int from, int t) {
  top[u] = t;
  if (!son[u]) return;
  dfs2(son[u], u, t);
  for (int i = h[u]; ~i; i = ne[i]) {
    int v = e[i];
    if (v == son[u] || v == from) continue;
    dfs2(v, u, v);
  }
}

int lca(int u, int v) {
  while (top[u] != top[v]) {
    // 谁的重链头深度深,谁就向上跳
    if (dep[top[u]] < dep[top[v]]) swap(u, v);
    u = fa[top[u]];
  }
  return dep[u] < dep[v] ? u : v;
}

int main() {
  memset(h, -1, sizeof h);
  scanf("%d%d%d", &n, &qu, &root);
  for (int i = 1; i <= n - 1; i++) {
    int a, b;
    scanf("%d%d", &a, &b);
    add(a, b), add(b, a);
  }

  dfs1(root, -1, 0);
  dfs2(root, -1, root);

  for (int i = 0; i < qu; i++) {
    int a, b;
    scanf("%d%d", &a, &b);
    printf("%d\n", lca(a, b));
  }
}

预处理时间复杂度 O ( n ) O(n) O(n),每次询问 O ( log ⁡ n ) O(\log n) O(logn),空间 O ( n ) O(n) O(n) n n n是顶点数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值