广义状态平均无线电能传输系统建模

关于WPT系统建模的一些笔记,在 CSDN 学到很多,现分享给大家,之前有看到过一篇博文, 内容语焉不详,对读者也很不客气,希望这篇博文对大家有用!

Hierarchical multiobjective H-infinity robust control design for wireless power transfer system using genetic algorithm

[!info] Bibliography
[1] M. Yang, Y. Li, H. Du, C. Li, and Z. He, “Hierarchical multiobjective H-infinity robust control design for wireless power transfer system using genetic algorithm,” IEEE Transactions on Control Systems Technology, vol. 27, no. 4, pp. 1753–1761, 2018, doi: 10.1109/TCST.2018.2814589 .

Information

KeyValue
Date2018-01
AuthorMingkai Yang, Yanling Li, Hao Du, Chen Li, Zhengyou He
Journal#IEEE-Transactions-on-Control-Systems-Technology
DOI10.1109/TCST.2018.2814589
PublisherIEEE Transactions on Control Systems Technology

在这里插入图片描述

System modeling

The states of dynamic components can be approximated by their first-order or zero-order:
i L p = ⟨ i L p ⟩ 1 e j ω t + ⟨ i L p ⟩ − 1 e − j ω t u C p = ⟨ u C p ⟩ 1 e j ω t + ⟨ u C p ⟩ − 1 e − j ω t i L s = ⟨ i L s ⟩ 1 e j ω t + ⟨ i L s ⟩ − 1 e − j ω t u C s = ⟨ u C s ⟩ 1 e j ω t + ⟨ u C s ⟩ − 1 e − j ω t u C f = ⟨ u C f ⟩ 0 \begin{equation} \begin{aligned} i_{L_p} & =\left\langle i_{L_p}\right\rangle_1 e^{j \omega t}+\left\langle i_{L_p}\right\rangle_{-1} e^{-j \omega t} \\ u_{C_p} & =\left\langle u_{C_p}\right\rangle_1 e^{j \omega t}+\left\langle u_{C_p}\right\rangle_{-1} e^{-j \omega t} \\ i_{L_s} & =\left\langle i_{L_s}\right\rangle_1 e^{j \omega t}+\left\langle i_{L_s}\right\rangle_{-1} e^{-j \omega t} \\ u_{C_s} & =\left\langle u_{C_s}\right\rangle_1 e^{j \omega t}+\left\langle u_{C_s}\right\rangle_{-1} e^{-j \omega t} \\ u_{C_f} & =\left\langle u_{C_f}\right\rangle_0 \end{aligned} \end{equation} iLpuCpiLsuCsuCf=iLp1et+iLp1et=uCp1et+uCp1et=iLs1et+iLs1et=uCs1et+uCs1et=uCf0

  • ω = 2 π f \omega = 2\pi f ω=2πf
  • ⟨ x ⟩ n = 1 T ∫ 0 T x e − j n ω t d t \langle x \rangle_n = \frac 1T \int_{0}^{T} x e^{-j n \omega t}dt xn=T10Txejnωtdt is the n n nth-order complex Fourier series coefficient.

[!note]

Another form:
i L p = a 1 i L p cos ⁡ ( ω t ) + b 1 i L p sin ⁡ ( ω t ) u C p = a 1 u C p cos ⁡ ( ω t ) + b 1 u C p sin ⁡ ( ω t ) i L s = a 1 i L s cos ⁡ ( ω t ) + b 1 i L s sin ⁡ ( ω t ) u C s = a 1 u C s cos ⁡ ( ω t ) + b 1 u C s sin ⁡ ( ω t ) u C f = a 1 u C f cos ⁡ ( ω t ) + b 1 u C f sin ⁡ ( ω t ) + a 0 u C f \begin{equation} \begin{aligned} i_{L_p} & = a_{1i_{L_p}} \cos(\omega t) +b_{1i_{L_p}} \sin(\omega t) \\ u_{C_p} & = a_{1u_{C_p}} \cos(\omega t) +b_{1u_{C_p}} \sin(\omega t) \\ i_{L_s} & = a_{1i_{L_s}} \cos(\omega t) +b_{1i_{L_s}} \sin(\omega t) \\ u_{C_s} & = a_{1u_{C_s}} \cos(\omega t) +b_{1u_{C_s}} \sin(\omega t) \\ u_{C_f} & = a_{1u_{C_f}} \cos(\omega t) +b_{1u_{C_f}} \sin(\omega t) + a_{0u_{C_f}}\\ \end{aligned} \end{equation} iLpuCpiLsuCsuCf=a1iLpcos(ωt)+b1iLpsin(ωt)=a1uCpcos(ωt)+b1uCpsin(ωt)=a1iLscos(ωt)+b1iLssin(ωt)=a1uCscos(ωt)+b1uCssin(ωt)=a1uCfcos(ωt)+b1uCfsin(ωt)+a0uCf
where ⟨ x ⟩ 1 = 1 2 ( a 1 x − i b 1 x ) \langle x \rangle_1 = \frac 12(a_{1x} - ib_{1x}) x1=21(a1xib1x)
a n = 2 T ∫ 0 T x ( t ) cos ⁡ ( t ) d t b n = 2 T ∫ 0 T x ( t ) sin ⁡ ( t ) d t a 0 = 2 T ∫ t − T t x ( t ) d t \begin{aligned} {a}_n &=\frac{2}{T} \int_0^{T} {x}(t) \cos (t) \mathrm{d}t \\ {b}_n &=\frac{2}{T} \int_0^{T} {x}(t) \sin (t) \mathrm{d}t \\ a_0 &=\frac{2}{{T}} \int_{t-{T}}^t {x}(t) \mathrm{d} t \end{aligned} anbna0=T20Tx(t)cos(t)dt=T20Tx(t)sin(t)dt=T2tTtx(t)dt

在这里插入图片描述

[!note]
{ L p d i L p d t − M d i L s d t + R p i L p − S i U in + u C p = 0 L s d i L s d t + R s i L s + u C s + S r u C f − M d i L p d t = 0 \left\{\begin{aligned} L_p \frac{d i_{L_p}}{d t} - M {\color{red}\frac{d i_{L_s}}{d t}}+ R_p i_{L_p} - S_iU_{\text{in}} + u_{C_p} &= 0\\ L_s {\color{red}\frac{d i_{L_s}}{d t}} + R_si_{L_s}+u_{C_s}+S_ru_{C_f} - M\frac{d i_{L_p}}{dt} &= 0 \end{aligned}\right. LpdtdiLpMdtdiLs+RpiLpSiUin+uCpLsdtdiLs+RsiLs+uCs+SruCfMdtdiLp=0=0
Using the second equation:
d i L s d t = 1 L s ( − R s i L s − u C s − S r u C f + M d i L p d t ) {\color{red}\frac{d i_{L_s}}{d t}} = \frac{1}{L_s} \left( -R_si_{L_s} - u_{C_s} - S_ru_{C_f} + M\frac{d i_{L_p}}{dt} \right) dtdiLs=Ls1(RsiLsuCsSruCf+MdtdiLp)
Substituting it to the first equation:
L p d i L p d t − M 1 L s ( − R s i L s − u C s − S r u C f + M d i L p d t ) + R p i L p − S i U in + u C p = 0 L p d i L p d t + M L s R s i L s + M L s u C s + M L s S r u C f − M 2 L s d i L p d t + R p i L p − S i U in + u C p = 0 d i L p d t ( L p − M 2 L s ) + i L s M L s R s + R p i L p + M L s u C s + M L s S r u C f − S i U in + u C p = 0 d i L p d t ( L p L s − M 2 L s ) + i L s M L s R s + R p i L p + M L s u C s + M L s S r u C f − S i U in + u C p = 0 i L s M L s R s + R p i L p + M L s u C s + M L s S r u C f − S i U in + u C p = d i L p d t ( M 2 − L p L s L s ) ( L s M 2 − L p L s ) [ i L s M L s R s + R p i L p + M L s u C s + M L s S r u C f − S i U in + u C p ] = d i L p d t ( 1 M 2 − L p L s ) [ i L s M R s + R p L s i L p + M u C s + M S r u C f − L s S i U in + L s u C p ] = d i L p d t 1 λ [ M R s i L s + R p L s i L p + M u C s + M S r u C f − L s S i U in + L s u C p ] = d i L p d t 1 λ [ R p L s i L p + L s u C p + M R s i L s + M u C s + M S r u C f − L s U in S i ] = d i L p d t \begin{aligned} L_p \frac{di_{L_p}}{dt} - M {\frac{1}{L_s} \left( - R_s i_{L_s} - u_{C_s} - S_r u_{C_f} + M \frac{di_{L_p}}{dt} \right)} + R_p i_{L_p} - S_i U_{\text{in}} + u_{C_p} & = 0\\ L_p \frac{di_{L_p}}{dt} {+ \frac{M}{L_s} R_s i_{L_s} + \frac{M}{L_s} u_{C_s} + \frac{M}{L_s} S_r u_{C_f} - \frac{M^2}{L_s} \frac{di_{L_p}}{dt}} + R_p i_{L_p} - S_i U_{\text{in}} + u_{C_p} & = 0\\ \frac{di_{L_p}}{dt} \left( L_p {- \frac{M^2}{L_s}} \right) {+ i_{L_s} \frac{M}{L_s} R_s} + R_p i_{L_p} {+ \frac{M}{L_s} u_{C_s} + \frac{M}{L_s} S_r u_{C_f}} - S_i U_{\text{in}} + u_{C_p} & = 0\\ \frac{di_{L_p}}{dt} \left( \frac{L_p L_s {- M^2}}{L_s} \right) {+ i_{L_s} \frac{M}{L_s} R_s} + R_p i_{L_p} {+ \frac{M}{L_s} u_{C_s} + \frac{M}{L_s} S_r u_{C_f}} - S_i U_{\text{in}} + u_{C_p} & = 0\\ {i_{L_s} \frac{M}{L_s} R_s} + R_p i_{L_p} {+ \frac{M}{L_s} u_{C_s} + \frac{M}{L_s} S_r u_{C_f}} - S_i U_{\text{in}} + u_{C_p} & = \frac{di_{L_p}}{dt} \left( \frac{{M^2} - L_p L_s {}}{L_s} \right)\\ \left( \frac{L_s}{M^2 - L_p L_s} \right) \left[ i_{L_s} \frac{M}{L_s} R_s + R_p i_{L_p} + \frac{M}{L_s} u_{C_s} + \frac{M}{L_s} S_r u_{C_f} - S_i U_{\text{in}} + u_{C_p} \right] & = \frac{di_{L_p}}{dt}\\ \left( \frac{1}{M^2 - L_p L_s} \right) [i_{L_s} MR_s + R_p L_s i_{L_p} + Mu_{C_s} + MS_r u_{C_f} - L_s S_i U_{\text{in}} + L_s u_{C_p}] & = \frac{di_{L_p}}{dt}\\ \frac1\lambda [MR_s i_{L_s} + R_p L_s i_{L_p} + Mu_{C_s} + MS_r u_{C_f} - L_s S_i U_{\text{in}} + L_s u_{C_p}] & = \frac{di_{L_p}}{dt}\\ \frac1\lambda [R_p L_s i_{L_p} + L_s u_{C_p} + MR_s i_{L_s} + Mu_{C_s} + MS_r u_{C_f} - L_s U_{\text{in}} S_i] & = \frac{di_{L_p}}{dt}\end{aligned} LpdtdiLpMLs1(RsiLsuCsSruCf+MdtdiLp)+RpiLpSiUin+uCpLpdtdiLp+LsMRsiLs+LsMuCs+LsMSruCfLsM2dtdiLp+RpiLpSiUin+uCpdtdiLp(LpLsM2)+iLsLsMRs+RpiLp+LsMuCs+LsMSruCfSiUin+uCpdtdiLp(LsLpLsM2)+iLsLsMRs+RpiLp+LsMuCs+LsMSruCfSiUin+uCpiLsLsMRs+RpiLp+LsMuCs+LsMSruCfSiUin+uCp(M2LpLsLs)[iLsLsMRs+RpiLp+LsMuCs+LsMSruCfSiUin+uCp](M2LpLs1)[iLsMRs+RpLsiLp+MuCs+MSruCfLsSiUin+LsuCp]λ1[MRsiLs+RpLsiLp+MuCs+MSruCfLsSiUin+LsuCp]λ1[RpLsiLp+LsuCp+MRsiLs+MuCs+MSruCfLsUinSi]=0=0=0=0=dtdiLp(LsM2LpLs)=dtdiLp=dtdiLp=dtdiLp=dtdiLp

d ⟨ i L p ⟩ 1 d t = λ − 1 ( R p L s ⟨ i L p ⟩ 1 + L s ⟨ u C p ⟩ 1 + M R s ⟨ i L s ⟩ 1 + M ⟨ u C s ⟩ 1 + M ⟨ S r u C f ⟩ 1 − L s U i n ⟨ S i ⟩ 1 ) − j ω ⟨ i L p ⟩ 1 d ⟨ u C p ⟩ 1 d t = C p − 1 ⟨ i L p ⟩ 1 − j ω ⟨ u C p ⟩ 1 d ⟨ i L s ⟩ 1 d t = λ − 1 ( M R p ⟨ i L p ⟩ 1 + M ⟨ u C p ⟩ 1 + R s L p ⟨ i L s ⟩ 1 + L p ⟨ u C s ⟩ 1 + L p ⟨ S r u C f ⟩ 1 − M U i n ⟨ S i ⟩ 1 ) − j ω ⟨ i L s ⟩ 1 d ⟨ u C s ⟩ 1 d t = C s − 1 ⟨ i L s ⟩ 1 − j ω ⟨ u C s ⟩ 1 d ⟨ u C f ⟩ 0 d t = C f − 1 ⟨ S r i L s ⟩ 0 − C f − 1 R d c − 1 ⟨ u C f ⟩ 0 \begin{equation} \begin{aligned} \frac{d \left\langle i_{L_p}\right\rangle_1}{dt}= & \lambda^{-1}\left(R_p L_s\left\langle i_{L_p}\right\rangle_1+L_s\left\langle u_{C_p}\right\rangle_1+M R_s\left\langle i_{L_s}\right\rangle_1\right. \\ & \left.+M\left\langle u_{C_s}\right\rangle_1+M\left\langle S_r u_{C_f}\right\rangle_1-L_s U_{\mathrm{in}}\left\langle S_i\right\rangle_1\right)-j \omega\left\langle i_{L_p}\right\rangle_1 \\ \frac{d \left\langle u_{C_p}\right\rangle_1}{dt}= & C_p^{-1}\left\langle i_{L_p}\right\rangle_1-j \omega\left\langle u_{C_p}\right\rangle_1 \\ \frac{d\left\langle i_{L_s}\right\rangle_1}{dt}= & \lambda^{-1}\left(M R_p\left\langle i_{L_p}\right\rangle_1+M\left\langle u_{C_p}\right\rangle_1+R_s L_p\left\langle i_{L_s}\right\rangle_1\right. \\ & \left.+L_p\left\langle u_{C_s}\right\rangle_1+L_p\left\langle S_r u_{C_f}\right\rangle_1-M U_{\mathrm{in}}\left\langle S_i\right\rangle_1\right)-j \omega\left\langle i_{L_s}\right\rangle_1 \\ \frac{d\left\langle u_{C_s}\right\rangle_1}{dt}= & C_s^{-1}\left\langle i_{L_s}\right\rangle_1-j \omega\left\langle u_{C_s}\right\rangle_1 \\ \frac{d \left\langle u_{C_f}\right\rangle_0}{dt}= & C_f^{-1}\left\langle S_r i_{L_s}\right\rangle_0-C_f^{-1} R_{\mathrm{dc}}^{-1}\left\langle u_{C_f}\right\rangle_0 \end{aligned} \end{equation} dtdiLp1=dtduCp1=dtdiLs1=dtduCs1=dtduCf0=λ1(RpLsiLp1+LsuCp1+MRsiLs1+MuCs1+MSruCf1LsUinSi1)iLp1Cp1iLp1uCp1λ1(MRpiLp1+MuCp1+RsLpiLs1+LpuCs1+LpSruCf1MUinSi1)iLs1Cs1iLs1uCs1Cf1SriLs0Cf1Rdc1uCf0

  • λ = M 2 − L p L s \lambda = M^2 - L_pL_s λ=M2LpLs
  • d ⟨ x ⟩ n ( t ) d t = ⟨ d x d t ⟩ n ( t ) − j n ω ⟨ x ⟩ n ( t ) \frac{d \langle x\rangle_n(t)}{d t}=\left\langle\frac{d x}{d t}\right\rangle_n(t)-j n \omega\langle x\rangle_n(t) dtdxn(t)=dtdxn(t)jnωxn(t)
  • S i ( t ) = sign ⁡ ( sin ⁡ ( ω t ) ) S_i(t) = \operatorname{sign}(\sin(\omega t)) Si(t)=sign(sin(ωt)) , ⟨ S i ⟩ 1 = − i 2 π , ⟨ S i ⟩ 1 R = 0 , ⟨ S i ⟩ 1 I = 2 π \langle S_i \rangle_1 = -i \frac 2\pi, \langle S_i \rangle_1^R = 0, \langle S_i \rangle_1 ^I = \frac2\pi Si1=iπ2,Si1R=0,Si1I=π2 S i ( t ) ≈ 4 π sin ⁡ ( ω t ) S_i(t) \approx \frac4\pi \sin(\omega t) Si(t)π4sin(ωt)
  • S r ( t ) = sign ⁡ ( sin ⁡ ( ω t + π / 2 ) ) S_r(t) = \operatorname{sign}(\sin(\omega t + \pi / 2)) Sr(t)=sign(sin(ωt+π/2)), ⟨ S r ⟩ 1 = 2 π , ⟨ S r ⟩ 1 R = 2 π , ⟨ S r ⟩ 1 I = 0 \langle S_r \rangle_1 = \frac 2 \pi, \langle S_r \rangle_1^R = \frac2\pi, \langle S_r \rangle_1 ^I = 0 Sr1=π2,Sr1R=π2,Sr1I=0, S r ( t ) ≈ 4 π cos ⁡ ( ω t ) S_r(t)\approx \frac4\pi \cos(\omega t) Sr(t)π4cos(ωt)

[!note]
S i ( t ) = ∑ n = 0 ∞ ⟨ S i ⟩ n e − j n ω t ⟨ S i ( t ) ⟩ 1 = 1 T ∫ − T / 2 T / 2 S i ( t ) e − j ω t d t = 1 T ∫ − T / 2 T / 2 sign ( sin ⁡ ( ω t ) ) e − j ω t d t = 1 T ( ∫ − T / 2 0 − e − j ω t d t + ∫ 0 T / 2 e − j ω t d t ) = 1 T ( ∫ − T / 2 0 − e − j ω t d t + ∫ 0 T / 2 e − j ω t d t ) = ω 2 π ( 1 j ω e − j ω t ∣ − π ω 0 − 1 j ω e − j ω t ∣ 0 π ω ) = ω 2 π 1 j ω [ ( 1 − e j π ) − ( e − j π − 1 ) ] = ω 2 π 1 j ω [ 2 − ( e j π + e − j π ) ] = ω 2 π 1 j ω [ 2 − 2 cos ⁡ ( π ) ] = 1 j 2 π 4 = − j 2 π \begin{aligned} S_i(t) &= \sum_{n = 0}^\infty \langle S_i \rangle_n e^{-j n \omega t} \\ \langle S_i (t) \rangle_1 & = \frac{1}{T} \int_{- T / 2}^{T / 2} S_i (t) e^{- j \omega t} dt\\ & = \frac{1}{T} \int_{- T / 2}^{T / 2} \text{sign} (\sin (\omega t)) e^{- j \omega t} dt\\ & = \frac{1}{T} \left( \int_{- T / 2}^0 - e^{- j \omega t} dt + \int_0^{T / 2} e^{- j \omega t} dt \right)\\ & = \frac{1}{T} \left( \int_{- T / 2}^0 - e^{- j \omega t} dt + \int_0^{T / 2} e^{- j \omega t} dt \right)\\ & = \frac{\omega}{2 \pi} \left( \left.\frac{1}{j \omega} e^{- j \omega t} \right|^0_{- \frac{\pi}{\omega} } - \left. \frac{1}{j \omega} e^{- j \omega t} \right|^{\frac{\pi}{\omega}}_0 \right)\\ & = \frac{\omega}{2 \pi} \frac{1}{j \omega} [(1 - e^{j \pi}) - (e^{- j \pi} - 1)]\\ & = \frac{\omega}{2 \pi} \frac{1}{j \omega} [2 - (e^{j \pi} + e^{- j \pi})]\\ & = \frac{\omega}{2 \pi} \frac{1}{j \omega} [2 - 2 \cos (\pi)]\\ & = \frac{1}{j 2 \pi} 4\\ & = - j \frac{2}{\pi} \end{aligned} Si(t)Si(t)1=n=0Sinejnωt=T1T/2T/2Si(t)etdt=T1T/2T/2sign(sin(ωt))etdt=T1(T/20etdt+0T/2etdt)=T1(T/20etdt+0T/2etdt)=2πω(1et ωπ01et 0ωπ)=2πω1[(1e)(e1)]=2πω1[2(e+e)]=2πω1[22cos(π)]=j2π14=jπ2
since c 1 = 1 2 ( a 1 − i b 1 ) c_1 = \frac12(a_1 -ib_1) c1=21(a1ib1), we have b 1 = 4 π b_1 = \frac 4\pi b1=π4, S i ≈ b 1 sin ⁡ ( ω t ) = 4 π sin ⁡ ( ω t ) S_i \approx b_1 \sin(\omega t) = \frac 4 \pi \sin (\omega t) Sib1sin(ωt)=π4sin(ωt)

Calculate using the below code (in Mathematica):

f = Sign[Sin[w t]];
T = 2 Pi / w;
c1 = 1/T Integrate[f Exp[-I w t], {t, 0, T}]
a1 = 2 Re[c1]
b1 = -2 Im[c1]

⟨ S r ( t ) ⟩ 1 = 1 T ∫ − T / 2 T / 2 S r ( t ) e − j ω t d t = 1 T ∫ − T / 2 T / 2 sign ( sin ⁡ ( ω t + π 2 ) ) e − j ω t d t = 1 T ∫ − T / 2 T / 2 sign ( cos ⁡ ( ω t ) ) e − j ω t d t = 1 T ( ∫ − T / 2 − T / 4 − e − j ω t d t + ∫ − T / 4 T / 4 e − j ω t d t + ∫ T / 4 T / 2 − e − j ω t d t ) = ω 2 π ( 1 j ω e − j ω t ∣ − π ω − π 2 ω − 1 j ω e − j ω t ∣ − π 2 ω π 2 ω + 1 j ω e − j ω t ∣ π 2 ω π ω ) = ω 2 π 1 j ω [ ( e j π 2 − e j π ) − ( e − j π 2 − e j π 2 ) + ( e − j π − e − j π 2 ) ] = ω 2 π 1 j ω [ ( e − j π − e j π ) + 2 ( e j π 2 − e − j π 2 ) ] = ω 2 π 1 j ω [ − 2 j sin ⁡ ( π ) + 4 j sin ⁡ ( π 2 ) ] = ω 2 π 1 j ω 4 j = 2 π \begin{aligned} \langle S_r (t) \rangle_1 & = \frac{1}{T} \int_{- T / 2}^{T / 2} S_r (t) e^{- j \omega t} dt\\ & = \frac{1}{T} \int_{- T / 2}^{T / 2} \text{sign} \left( \sin \left( \omega t + \frac{\pi}{2} \right) \right) e^{- j \omega t} dt\\ & = \frac{1}{T} \int_{- T / 2}^{T / 2} \text{sign} (\cos (\omega t)) e^{- j \omega t} dt\\ & = \frac{1}{T} \left( \int_{- T / 2}^{- T / 4} - e^{- j \omega t} dt + \int_{- T / 4}^{T / 4} e^{- j \omega t} dt + \int_{T / 4}^{T / 2} - e^{- j \omega t} dt \right)\\ & = \frac{\omega}{2 \pi} \left( \left. \frac{1}{j \omega} e^{- j \omega t} \right|^{- \frac{\pi}{2 \omega}}_{- \frac{\pi}{\omega} } - \left. \frac{1}{j \omega} e^{- j \omega t} \right|^{\frac{\pi}{2 \omega}}_{- \frac{\pi}{2 \omega} } + \left. \frac{1}{j \omega} e^{- j \omega t} \right|^{\frac{\pi}{\omega}}_{\frac{\pi}{2 \omega} } \right)\\ & = \frac{\omega}{2 \pi} \frac{1}{j \omega} \left[ \left( e^{j \frac{\pi}{2}} - e^{j \pi} \right) - \left( e^{- j \frac{\pi}{2}} - e^{j \frac{\pi}{2}} \right) + \left( e^{- j \pi} - e^{- j \frac{\pi}{2}} \right) \right]\\ & = \frac{\omega}{2 \pi} \frac{1}{j \omega} \left[ (e^{- j \pi} - e^{j \pi}) + 2 \left( e^{j \frac{\pi}{2}} - e^{- j \frac{\pi}{2}} \right) \right]\\ & = \frac{\omega}{2 \pi} \frac{1}{j \omega} \left[ - 2 j \sin (\pi) + 4 j \sin \left( \frac{\pi}{2} \right) \right]\\ & = \frac{\omega}{2 \pi} \frac{1}{j \omega} 4 j\\ & = \frac{2}{\pi}\end{aligned} Sr(t)1=T1T/2T/2Sr(t)etdt=T1T/2T/2sign(sin(ωt+2π))etdt=T1T/2T/2sign(cos(ωt))etdt=T1(T/2T/4etdt+T/4T/4etdt+T/4T/2etdt)=2πω(1et ωπ2ωπ1et 2ωπ2ωπ+1et 2ωπωπ)=2πω1[(ej2πe)(ej2πej2π)+(eej2π)]=2πω1[(ee)+2(ej2πej2π)]=2πω1[2jsin(π)+4jsin(2π)]=2πω14j=π2

a 1 = 2 ⟨ S r ( t ) ⟩ 1 R a_1 = 2\langle S_r (t) \rangle_1^R a1=2Sr(t)1R, S r ≈ a 1 cos ⁡ ( ω t ) = 4 π cos ⁡ ( ω t ) S_r\approx a_1 \cos(\omega t) = \frac 4\pi \cos(\omega t) Sra1cos(ωt)=π4cos(ωt)

Calculate using the below code:

f  = Sign[Sin[w t + Pi / 2]];
T  = 2 Pi / w;
c1 = 1/T Integrate[f Exp[-I w t], {t, 0, T}]
a1 = 2 Re[c1]
b1 = -2 Im[c1]

[!warning]

Here using the triangular form of transformation will be more convenient !!!
⟨ S r ( t ) ⟩ 1 R = 1 T ∫ − T / 2 T / 2 S r ( t ) cos ⁡ ( ω t ) d t = 2 π ⟨ S r ( t ) ⟩ 1 I = 1 T ∫ − T / 2 T / 2 S r ( t ) sin ⁡ ( ω t ) d t = 0 \begin{aligned} \langle S_r(t) \rangle_1^R &= \frac 1 T \int_{-T/2}^{T/2}S_r(t) \cos (\omega t ) dt\\ &= \frac 2 \pi \\ \langle S_r(t) \rangle_1^I &= \frac 1 T \int_{-T/2}^{T/2}S_r(t) \sin (\omega t ) dt\\ &= 0 \end{aligned} Sr(t)1RSr(t)1I=T1T/2T/2Sr(t)cos(ωt)dt=π2=T1T/2T/2Sr(t)sin(ωt)dt=0
Code:

f = Sign[Sin[w t + Pi / 2]]
T = 2 Pi / w
a1half = 1/T Integrate[f Cos[w t], {t, 0, T}]
b1half = 1/T Integrate[f Sin[w t], {t, 0, T}]

[!note]

Taking the first equation as an example:
d ⟨ i L p ⟩ 1 d t = λ − 1 ( R p L s ⟨ i L p ⟩ 1 + L s ⟨ u C p ⟩ 1 + M R s ⟨ i L s ⟩ 1 + M ⟨ u C s ⟩ 1 + M ⟨ S r u C f ⟩ 1 − L s U i n ⟨ S i ⟩ 1 ) − j ω ⟨ i L p ⟩ 1 d ⟨ i L p ⟩ 1 R d t = λ − 1 ( R p L s ⟨ i L p ⟩ 1 R + L s ⟨ u C p ⟩ 1 R + M R s ⟨ i L s ⟩ 1 R + M ⟨ u C s ⟩ 1 R + M ⟨ S r u C f ⟩ 1 R − L s U i n ⟨ S i ⟩ 1 R ) + ω ⟨ i L p ⟩ 1 I = λ − 1 [ R p L s ⟨ i L p ⟩ 1 R + L s ⟨ u C p ⟩ 1 R + M R s ⟨ i L s ⟩ 1 R + M ⟨ u C s ⟩ 1 R + M ( ⟨ S r ⟩ 0 ⟨ u C f ⟩ 1 R + ⟨ S r ⟩ 1 R ⟨ u C f ⟩ 0 ) − L s U i n ⟨ S i ⟩ 1 R ] + ω ⟨ i L p ⟩ 1 I = ⟨ i L p ⟩ 1 R λ − 1 R p L s + ⟨ i L p ⟩ 1 I ω + ⟨ u C p ⟩ 1 R λ − 1 L s + ⟨ u C p ⟩ 1 I 0 + ⟨ i L s ⟩ 1 R λ − 1 M R s + ⟨ i L s ⟩ 1 I 0 + ⟨ u C s ⟩ 1 R λ − 1 M + ⟨ u C s ⟩ 1 I 0 + ⟨ u C f ⟩ 0 λ − 1 M ⟨ S r ⟩ 1 R d ⟨ i L p ⟩ 1 I d t = λ − 1 ( R p L s ⟨ i L p ⟩ 1 I + L s ⟨ u C p ⟩ 1 I + M R s ⟨ i L s ⟩ 1 I + M ⟨ u C s ⟩ 1 I + M ⟨ S r u C f ⟩ 1 I − L s U i n ⟨ S i ⟩ 1 I ) − ω ⟨ i L p ⟩ 1 R = λ − 1 ( R p L s ⟨ i L p ⟩ 1 I + L s ⟨ u C p ⟩ 1 I + M R s ⟨ i L s ⟩ 1 I + M ⟨ u C s ⟩ 1 I + M ( ⟨ S r ⟩ 0 ⟨ u C f ⟩ 1 I + ⟨ S r ⟩ 1 I ⟨ u C f ⟩ 0 ) − L s U i n ⟨ S i ⟩ 1 I ) − ω ⟨ i L p ⟩ 1 R \begin{aligned} \frac{d \langle i_{L_p} \rangle_1}{dt} & = \lambda^{- 1} (R_p L_s \langle i_{L_p} \rangle_1 + L_s \langle u_{C_p} \rangle_1 + M R_s \langle i_{L_s} \rangle_1 + M \langle u_{C_s} \rangle_1 + M \langle S_r u_{C_f} \rangle_1 - L_s U_{\mathrm{in}} \langle S_i \rangle_1) - j \omega \langle i_{L_p} \rangle_1\\ \frac{d \langle i_{L_p} \rangle^R_1}{dt} & = \lambda^{- 1} \left( R_p L_s \langle i_{L_p} \rangle^R_1 + L_s \langle u_{C_p} \rangle^R_1 + M R_s \langle i_{L_s} \rangle^R_1 + M \langle u_{C_s} \rangle^R_1 + M \langle S_r u_{C_f} \rangle^R_1 - L_s U_{\mathrm{in}} \langle S_i \rangle^R_1 \right) + \omega \langle i_{L_p} \rangle^I_1\\ & = \lambda^{- 1} \left[ R_p L_s \langle i_{L_p} \rangle^R_1 + L_s \langle u_{C_p} \rangle^R_1 + M R_s \langle i_{L_s} \rangle^R_1 + M \langle u_{C_s} \rangle^R_1 + M (\langle S_r \rangle_0 \langle u_{C_f} \rangle^R_1 + \langle S_r \rangle^R_1 \langle u_{C_f} \rangle_0) - L_s U_{\mathrm{in}} \langle S_i \rangle^R_1 \right] + \omega \langle i_{L_p} \rangle^I_1\\ & ={\langle i_{L_p} \rangle^R_1} \lambda^{- 1} R_p L_s + {\langle i_{L_p} \rangle^I_1} \omega +{\langle u_{C_p} \rangle^R_1} \lambda^{- 1} L_s +{\langle u_{C_p} \rangle^I_1} 0 +{\langle i_{L_s} \rangle^R_1} \lambda^{- 1} M R_s +{\langle i_{L_s} \rangle^I_1} 0 +{\langle u_{C_s} \rangle^R_1} \lambda^{- 1} M +{\langle u_{C_s} \rangle^I_1} 0 +{\langle u_{C_f} \rangle_0} \lambda^{- 1} M \langle S_r \rangle^R_1\\ \frac{d \langle i_{L_p} \rangle^I_1}{dt} & = \lambda^{- 1} \left( R_p L_s \langle i_{L_p} \rangle^I_1 + L_s \langle u_{C_p} \rangle^I_1 + M R_s \langle i_{L_s} \rangle^I_1 + M \langle u_{C_s} \rangle^I_1 + M \langle S_r u_{C_f} \rangle^I_1 - L_s U_{\mathrm{in}} \langle S_i \rangle^I_1 \right) - \omega \langle i_{L_p} \rangle^R_1\\ & = \lambda^{- 1} \left( R_p L_s \langle i_{L_p} \rangle^I_1 + L_s \langle u_{C_p} \rangle^I_1 + M R_s \langle i_{L_s} \rangle^I_1 + M \langle u_{C_s} \rangle^I_1 + M (\langle S_r \rangle_0 \langle u_{C_f} \rangle^I_1 + \langle S_r \rangle^I_1 \langle u_{C_f} \rangle_0) - L_s U_{\mathrm{in}} \langle S_i \rangle^I_1 \right) - \omega \langle i_{L_p} \rangle^R_1\end{aligned} dtdiLp1dtdiLp1RdtdiLp1I=λ1(RpLsiLp1+LsuCp1+MRsiLs1+MuCs1+MSruCf1LsUinSi1)iLp1=λ1(RpLsiLp1R+LsuCp1R+MRsiLs1R+MuCs1R+MSruCf1RLsUinSi1R)+ωiLp1I=λ1[RpLsiLp1R+LsuCp1R+MRsiLs1R+MuCs1R+M(⟨Sr0uCf1R+Sr1RuCf0)LsUinSi1R]+ωiLp1I=iLp1Rλ1RpLs+iLp1Iω+uCp1Rλ1Ls+uCp1I0+iLs1Rλ1MRs+iLs1I0+uCs1Rλ1M+uCs1I0+uCf0λ1MSr1R=λ1(RpLsiLp1I+LsuCp1I+MRsiLs1I+MuCs1I+MSruCf1ILsUinSi1I)ωiLp1R=λ1(RpLsiLp1I+LsuCp1I+MRsiLs1I+MuCs1I+M(⟨Sr0uCf1I+Sr1IuCf0)LsUinSi1I)ωiLp1R

  • ⟨ S i ⟩ 0 = 0 , ⟨ S i ⟩ 1 R = 0 , ⟨ S i ⟩ 1 I = 2 π \langle S_i \rangle_0 = 0, \langle S_i \rangle^R_1 = 0, \langle S_i \rangle^I_1 = \frac 2\pi Si0=0,Si1R=0,Si1I=π2
  • ⟨ S r ⟩ 0 = 0 , ⟨ S r ⟩ 1 R = 2 π , ⟨ S i ⟩ 1 I = 0 \langle S_r \rangle_0 = 0, \langle S_r \rangle^R_1 = \frac 2\pi, \langle S_i \rangle^I_1 = 0 Sr0=0,Sr1R=π2,Si1I=0

State space model:
{ x ˙ = A ⋅ x + B ⋅ U i n y = ⟨ u C f ⟩ 0 \left\{\begin{array}{l} \dot{\mathbf{x}}=\mathbf{A} \cdot \mathbf{x}+\mathbf{B} \cdot U_{\mathrm{in}} \\ y=\left\langle u_{C_f}\right\rangle_0 \end{array}\right. {x˙=Ax+BUiny=uCf0
where
x = [ ⟨ i L p ⟩ 1 R , ⟨ i L p ⟩ 1 I , ⟨ u C p ⟩ 1 R , ⟨ u C p ⟩ 1 I , ⟨ i L s ⟩ 1 R , ⟨ i L s ⟩ 1 I , ⟨ u C s ⟩ 1 R , ⟨ u C s ⟩ 1 I , ⟨ u C f ⟩ 0 ] T A = [ R p L s 1 λ ω L s 1 λ 0 M R s 1 λ 0 M 1 λ 0 2 1 π M 1 λ − ω R p L s 1 λ 0 L s 1 λ 0 M R s 1 λ 0 M 1 λ 0 C p − 1 0 0 ω 0 0 0 0 0 0 C p − 1 − ω 0 0 0 0 0 0 M R p 1 λ 0 M 1 λ 0 R s L p 1 λ ω L p 1 λ 0 2 1 π L p 1 λ 0 M R p 1 λ 0 M 1 λ − ω R s L p 1 λ 0 L p 1 λ 0 0 0 0 0 C s − 1 0 0 ω 0 0 0 0 0 0 C s − 1 − ω 0 0 0 0 0 0 4 1 π C f − 1 0 0 0 − C f − 1 R d c − 1 ] B = [ 0 2 1 π L s 1 λ 0 0 0 2 1 π M 1 λ 0 0 0 ] T \begin{aligned} \mathbf x &= \left[\langle i_{L_p}\rangle_1^R, \langle i_{L_p}\rangle_1^I, \langle u_{C_p}\rangle_1^R, \langle u_{C_p}\rangle_1^I, \langle i_{L_s}\rangle_1^R, \langle i_{L_s}\rangle_1^I, \langle u_{C_s}\rangle_1^R, \langle u_{C_s}\rangle_1^I, \langle u_{C_f}\rangle_0\right]^T\\ \mathbf{A} &=\left[\begin{array}{ccccccccc} R_p L_s \frac{1}{\lambda} & \omega & L_s \frac{1}{\lambda} & 0 & M R_s \frac{1}{\lambda} & 0 & M \frac{1}{\lambda} & 0 & 2 \frac1{\pi} M \frac{1}{\lambda} \\ -\omega & R_p L_s \frac{1}{\lambda} & 0 & L_s \frac{1}{\lambda} & 0 & M R_s \frac{1}{\lambda} & 0 & M \frac{1}{\lambda} & 0 \\ C_p^{-1} & 0 & 0 & \omega & 0 & 0 & 0 & 0 & 0 \\ 0 & C_p^{-1} & -\omega & 0 & 0 & 0 & 0 & 0 & 0 \\ M R_p \frac{1}{\lambda} & 0 & M \frac{1}{\lambda} & 0 & R_s L_p \frac{1}{\lambda} & \omega & L_p \frac{1}{\lambda} & 0 & 2 \frac1{\pi} L_p \frac{1}{\lambda} \\ 0 & M R_p \frac{1}{\lambda} & 0 & M \frac{1}{\lambda} & -\omega & R_s L_p \frac{1}{\lambda} & 0 & L_p \frac{1}{\lambda} & 0 \\ 0 & 0 & 0 & 0 & C_s^{-1} & 0 & 0 & \omega & 0 \\ 0 & 0 & 0 & 0 & 0 & C_s^{-1} & -\omega & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 \frac1{\pi} C_f^{-1} & 0 & 0 & 0 & -C_f^{-1} R_{\mathrm{dc}}^{-1} \end{array}\right] \\ \mathbf{B}&=\left[\begin{array}{lllllllll} 0 & 2 \frac1{\pi} L_s \frac{1}{\lambda} & 0 & 0 & 0 & 2 \frac1{\pi} M \frac{1}{\lambda} & 0 & 0 & 0 \end{array}\right]^T \\ \end{aligned} xAB=[iLp1R,iLp1I,uCp1R,uCp1I,iLs1R,iLs1I,uCs1R,uCs1I,uCf0]T= RpLsλ1ωCp10MRpλ10000ωRpLsλ10Cp10MRpλ1000Lsλ100ωMλ100000Lsλ1ω00Mλ1000MRsλ1000RsLpλ1ωCs104π1Cf10MRsλ100ωRsLpλ10Cs10Mλ1000Lpλ100ω00Mλ1000Lpλ1ω002π1Mλ10002π1Lpλ1000Cf1Rdc1 =[02π1Lsλ10002π1Mλ1000]T

  • λ = M 2 − L s L p \lambda = M^2 - L_s L_p λ=M2LsLp

Simulation study

Configuration

SIMULINK 2018a or higher
仿真使用了移相控制,占空比 0.7,本文中的模型没有考虑移相控制,或者可以认为本文的模型是开关管满开的状态,即占空比为1,感兴趣的同学可以自己推导一下,后面有时间我可能会补上详细的推导。

Matlab code:

%---------------------------------------
% This is the simulation from yangHierarchical2018 
% Hierarchical multiobjective H-infinity robust control
% design for wireless power transfer system using genetic algorithm
%
%
% hu 2023-03-08 Created
% hu 2023-03-19 Corrected one error in the paper 
% hu 2023-04-05 Corrected one error in the paper 
% hu 2023-04-10 Applied ODE45 to solve ODE
% hu 2023-05-23 Dual direction phase shift is included and verified
%---------------------------------------

clc,clear,close all



ts = 0;
tf = .05;

Vin = 100;
%                 [iL1; uC1; iL2; uC2; vo];
flagModOutput   = [ 1;   1;   1;   1;   1]; 
flagSimOutput   = flagModOutput;
flagInterpertor = 1; % First order interper for Modelled signals


Rdc = 15;
f   = 85e3;
T   = 1 / f;
fC  = @(L)(1/2/pi/f)^2/L;
fw  = @(L,C)1/2/pi/sqrt(L * C);

Cf  = 4700e-6;
L1  = 275e-6;
L2  = 275e-6;
C1  = 12.75e-9;
C2  = 12.70e-9;
R2  = .191;
R1  = .192;
M   = 91.5e-6;
k12 = M / sqrt(L2 * L1);
u   = 100;
D   = .7; % Duty which is in 0 to 1;
Phaseshift = D;


lambda = M^2 - L1 * L2;
w      = 2 * pi * f;

f1 = fw(L1,C1);
f2 = fw(L2,C2);


Sr1R = sin(pi / 2 * D) * 2 / pi;
Si1I = sin(pi / 2 * D) * 2 / pi;

p1 = R1 * L2 * lambda^-1;
p2 = L2 * lambda^-1;
p3 = M  * R2 * lambda^-1; 
p4 = M  * lambda^-1;
p5 = Sr1R * M * lambda^-1;
s1 = M  * R1 * lambda^-1;
s2 = M  * lambda^-1;
s3 = R2 * L1 * lambda^-1;
s4 = L1 * lambda^-1;
s5 = Sr1R * L1 * lambda^-1;
c1 = 4 / pi / Cf;
c2 = -1 / Cf / Rdc;
b1 = Si1I * L2 / lambda;
b2 = Si1I * M / lambda;
% ----------------------------
% ----  Consider Cf ----
% ----------------------------

A(1,:) = [p1,   w,    p2,   0,    p3, 0,  p4, 0,  p5];
A(2,:) = [-w,   p1,   0,    p2,   0,  p3, 0,  p4, 0 ];
A(3,:) = [1/C1, 0,    0,    w,    zeros(1,5)];
A(4,:) = [0,    1/C1, -w,   0,    zeros(1,5)];
A(5,:) = [s1,   0,    s2,   0,    s3, w,  s4, 0,  s5];
A(6,:) = [0,    s1,   0,    s2,   -w, s3, 0,  s4, 0 ];
A(7,:) = [zeros(1,4), 1/C2, 0,    0,  w, 0];
A(8,:) = [zeros(1,4), 0,    1/C2, -w, 0, 0 ];
A(9,:) = [zeros(1,4), c1, 0,   0,  0, c2];

B = [0, b1, 0, 0, 0, b2, 0, 0, 0]';

A
B


tspan  = [ts,tf];
Relerr = 1e-7; % Relative error bound
Abserr = 1e-6; % Absolute error bound
x0     = zeros(9,1);
xdot   = @(t,x)A * x + B * u;
options = odeset('RelTol',Relerr,'AbsTol',Abserr,'Stats','on');
[t,x] =ode45(@(t,x)A * x + B * u,tspan,x0,options);

if(flagModOutput(1)) iL1out  = 2 * x(:,1) .* cos(w * t) - 2 * x(:,2) .* sin(w * t); end
if(flagModOutput(2)) uC1out  = 2 * x(:,3) .* cos(w * t) - 2 * x(:,4) .* sin(w * t); end
if(flagModOutput(3)) iL2out  = 2 * x(:,5) .* cos(w * t) - 2 * x(:,6) .* sin(w * t); end
if(flagModOutput(4)) uC2out  = 2 * x(:,7) .* cos(w * t) - 2 * x(:,8) .* sin(w * t); end
if(flagModOutput(5)) voout   = x(:,9); end

global ii, ii = 0;

%%

sim WPTWithPhaseShiftControl;
SIM = ans;

if(flagSimOutput(2)) uC1outSIM = SIM.SimData.Data(:,1); end
if(flagSimOutput(1)) iL1outSIM = SIM.SimData.Data(:,2); end
if(flagSimOutput(4)) uC2outSIM = SIM.SimData.Data(:,3); end
if(flagSimOutput(3)) iL2outSIM = SIM.SimData.Data(:,4); end
if(flagSimOutput(5)) vooutSIM  = SIM.SimData.Data(:,5); end

toutSIM   = SIM.tout;

if(flagInterpertor)
    if(flagSimOutput(1)) iL1out = interp1(t,iL1out,toutSIM); end
    if(flagSimOutput(2)) uC1out = interp1(t,uC1out,toutSIM); end
    if(flagSimOutput(3)) iL2out = interp1(t,iL2out,toutSIM); end
    if(flagSimOutput(4)) uC2out = interp1(t,uC2out,toutSIM); end
    if(flagSimOutput(5)) voout  = interp1(t,voout,toutSIM);  end
end


close all


pos = mypos(8);
i   = 1;
linewidth = 1.5;
fontsize  = 12;

tsplot    = 0;
tfplot    = tf - T;
M1        = find(toutSIM>tsplot,1);
M2        = find(toutSIM>tfplot,1);
xlim      = [tsplot,tfplot];
toutSIMplot   = toutSIM(M1:M2,1);
iL1outSIMplot = iL1outSIM(M1:M2,1);
uC1outSIMplot = uC1outSIM(M1:M2,1);
iL2outSIMplot = iL2outSIM(M1:M2,1);
uC2outSIMplot = uC2outSIM(M1:M2,1);
vooutSIMplot  = vooutSIM(M1:M2,1);

iL1outplot = iL1out(M1:M2,1);
uC1outplot = uC1out(M1:M2,1);
iL2outplot = iL2out(M1:M2,1);
uC2outplot = uC2out(M1:M2,1);
vooutplot  = voout(M1:M2,1);

if(flagModOutput(1))
    figure
    plot(toutSIMplot,iL1outplot,toutSIMplot,iL1outSIMplot,'linewidth',linewidth);
    set(gca,'XLim',xlim);
    h = legend('$i_{L1_{GSSA}}$','$i_{L1_{SIM}}$');
    h.Interpreter = 'latex';
    h.FontSize    = fontsize;
    h.Location    = 'northeast';
    h.Orientation = 'horizon';
    set(gcf,'position',pos{i});
    i = i + 1;
    grid on
end

if(flagModOutput(2))
    figure
    plot(toutSIMplot,uC1outplot,toutSIMplot,uC1outSIMplot,'linewidth',linewidth);
    set(gca,'XLim',xlim);
    h = legend('$u_{C1_{GSSA}}$', '$u_{C1_{SIM}}$');
    h.Interpreter = 'latex';
    h.FontSize    = fontsize;
    h.Location    = 'northeast';
    h.Orientation = 'horizon';
    set(gcf,'position',pos{i});
    i = i + 1;
    grid on
end

if(flagModOutput(3))
    figure
    plot(toutSIMplot,iL2outplot,toutSIMplot,iL2outSIMplot,'linewidth',linewidth);
    set(gca,'XLim',xlim);
    h = legend('$i_{L2_{GSSA}}$','$i_{L2_{SIM}}$');
    h.Interpreter = 'latex';
    h.FontSize    = fontsize;
    h.Location    = 'northeast';
    h.Orientation = 'horizon';
    set(gcf,'position',pos{i});
    i = i + 1;
    grid on
end

if(flagModOutput(4))
    figure
    plot(toutSIMplot,uC2outplot,toutSIMplot,uC2outSIMplot,'linewidth',linewidth);
    set(gca,'XLim',xlim);
    h = legend('$u_{C2_{GSSA}}$', '$u_{C2_{SIM}}$');
    h.Interpreter = 'latex';
    h.FontSize    = fontsize;
    h.Location    = 'northeast';
    h.Orientation = 'horizon';
    set(gcf,'position',pos{i});
    i = i + 1;
    grid on
end

if(flagModOutput(5))
    figure
    plot(toutSIMplot,vooutplot,toutSIMplot,vooutSIMplot,'linewidth',linewidth);
    set(gca,'XLim',xlim);
    h = legend('$u_{o_{GSSA}}$', '$u_{o_{SIM}}$');
    h.Interpreter = 'latex';
    h.FontSize    = fontsize;
    h.Location    = 'southeast';
    h.Orientation = 'horizon';
    set(gcf,'position',pos{i});
    i = i + 1;
    grid on
end

mypos function:

function pos = mypos(i,figs1,figs2)
% mypos.m                    给定 figure 对象个数求解合适的摆放位置向量以防止图片堆叠
% i                          figure 个数(直接写8就好了,用不到的就放着呗)
% figs1,figs2                figure 对象的长和高
% pos = mypos(i,figs1,figs2) 求出 i 个 figure 对象的合理摆放位置,且大小设置为[figs1,figs2]
%                            输出 pos 是元胞数组,使用规范(已生成figure对象后):set(gcf,'position',pos{i})
% Remark                     更方便的绘图程序见 myplot.m

% hu 2018-6-11
% hu 2018-8-8  Modified Remark is added
% hu 2018-11-3 Modified Description is updated

if nargin ~= 3
	figs = [400,300]; %default size is 560*420, 500*280 is suitable for paper shows
else
    figs = [figs1,figs2];
end
if i > 8
    disp('too many figures! The maximum number is 8')
end
scr = get(0,'screensize');
for k = 1:i
    if k <= 4
        pos{k} = [scr(1) + (k - 1) * figs(1),scr(2) + scr(4) / 2,figs];
    end
    if k > 4
        pos{k} = [scr(1) + (k - 5) * scr(3) / 4,scr(2) + 30,figs];
    end
end
end

Results

Primary current
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
仿真结果与 SIMULINK 模型几乎重合,验证了建模的正确性

仿真模型:

https://download.csdn.net/download/hu3350261/87812337

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值