(图片来源网络,与本数据无关)
北京师范大学缪驰远教授团队!发布最新中国大陆高分辨率多干旱指数数据(1961-2022/ 0.1°)
干旱指数对于评估和管理水资源短缺和农业风险至关重要;然而,现有数据集缺乏统一的数据基础,导致不一致,对干旱指数的可比性提出了挑战。本研究致力于创建空间分辨率为0.1°的创新综合长期气象干旱数据集CHM_Drought,数据来自1961年至2022年中国大陆。它具有六个关键的气象干旱指数:标准化降水指数(SPI)、标准化降水蒸散指数(SPEI)、蒸发需求干旱指数(EDDI)、帕尔默干旱严重度指数(PDSI)、自校准帕尔默干旱严重度指数(SC- PDSI) 和蒸气压差 (VPD),其中 SPI、SPEI、EDDI 包含 2 周和 1-12 个月的多尺度特征。该数据集综合应用了高密度气象站数据,从基本气象要素开始形成了完整的框架(中国水文气象数据集,CHM)。该数据集在准确捕捉中国大陆干旱事件方面表现出色,对 2022 年长江流域夏季干旱的详细描述就证明了这一点。此外,为了评价CHM_Drought,我们对基于气候研究单位(CRU)和CN05.1数据计算的干旱指数进行了一致性检验,发现所有指数总体具有较高的一致性,并且两周尺度的SPI、SPEI和EDDI 在干旱监测中具有潜在的预警作用。全面的,我们的数据集弥补了中国高精度多指标干旱数据的空白,完整的基于CHM的框架保证了数据集的一致性和可靠性,有助于加深对中国干旱格局和趋势的了解。
CHM_Drought,一个创新的综合长期气象干旱数据集,空间分辨率为0.1°,数据采集于1961年至2022年中国大陆。它具有六个关键的气象干旱指数:标准化降水指数(SPI)、标准化降水蒸散指数(SPEI)、蒸发需求干旱指数(EDDI)、帕尔默干旱严重度指数(PDSI)、自校准帕尔默干旱严重度指数(SC- PDSI)和蒸气压赤字(VPD),其中SPI、SPEI和EDDI包含2周和1-12个月的多尺度特征。
数据介绍
该数据集综合应用了高密度气象站数据,从基本气象要素开始形成了完整的框架(中国水文气象数据集,CHM)。
全局属性:
· 变量 = SPEI-xx、SPI-xx、EDDI-xx、PDSI、SC-PDSI、VPD
· 日期格式 = NetCDF
· 时间范围 = 1961-01-01 至 2022-12-31
· 空间分辨率 = 0.1 度
· 空间范围 = 18°N–54°N, 72°E–136°E
· 缺失值 = NA