金融风控违约预测-task2

探索性数据分析

0.概述

机器学习模型,是要学得数据中的分布规律,然后利用数据分布规律进行预测。我们的数据以特征为基本的表现形式,这些特征有的是有用的,有的是没有用的,建模之前进行的探索性数据分析,就是为了找出跟预测事物相关的特征,而进行的对数据的必要初步了解。
因此第一步,就是要看有哪些特征,分布如何,然后做合适的假设。尽管现在特征工程都在走形式化,流程化,但能对特征与目标之间关系的理性的规律性认识,仍然是机器学习建模中宝贵的经验。特别是金融中,要求可解释性强的模型,传统机器学习模型仍然占主导地位,对特征背后的意义与预测目标之间的关系要求更高。

1.数据总览

利用pandas,可以很方便的看到数据概况。

data_test_a.shape
# (200000, 48)
data_train.shape
# (800000, 47)
data_train.columns
# Index(['id', 'loanAmnt', 'term', 'interestRate', 'installment', 'grade',
#       'subGrade', 'employmentTitle', 'employmentLength', 'homeOwnership',
#       'annualIncome', 'verificationStatus', 'issueDate', 'isDefault',
#      'purpose', 'postCode', 'regionCode', 'dti', 'delinquency_2years',
#     'ficoRangeLow', 'ficoRangeHigh', 'openAcc', 'pubRec',
#    'pubRecBankruptcies', 'revolBal', 'revolUtil', 'totalAcc',
#      'initialListStatus', 'applicationType', 'earliesCreditLine', 'title',
#     'policyCode', 'n0', 'n1', 'n2', 'n2.1', 'n4', 'n5', 'n6', 'n7', 'n8',
#       'n9', 'n10', 'n11', 'n12', 'n13', 'n14'],
#      dtype='object')

也可以利用info方法,查看特征数值类型

data_train.info()

特征可以分为两种类型,类别特征与数值特征,数值特征包括连续数值特征与离散数值特征。

2.特征分析

查看一下具体的列名,赛题理解部分已经给出具体的特征含义,这里为了方便阅读,列举一下:

  • id 为贷款清单分配的唯一信用证标识
  • loanAmnt 贷款金额
  • term 贷款期限(year)
  • interestRate 贷款利率
  • installment 分期付款金额
  • grade 贷款等级
  • subGrade 贷款等级之子级
  • employmentTitle 就业职称
  • employmentLength 就业年限(年)
  • homeOwnership 借款人在登记时提供的房屋所有权状况
  • annualIncome 年收入
  • verificationStatus 验证状态
  • issueDate 贷款发放的月份
  • purpose 借款人在贷款申请时的贷款用途类别
  • postCode 借款人在贷款申请中提供的邮政编码的前3位数字
  • regionCode 地区编码
  • dti 债务收入比
  • delinquency_2years 借款人过去2年信用档案中逾期30天以上的违约事件数
  • ficoRangeLow 借款人在贷款发放时的fico所属的下限范围
  • ficoRangeHigh 借款人在贷款发放时的fico所属的上限范围
  • openAcc 借款人信用档案中未结信用额度的数量
  • pubRec 贬损公共记录的数量
  • pubRecBankruptcies 公开记录清除的数量
  • revolBal 信贷周转余额合计
  • revolUtil 循环额度利用率,或借款人使用的相对于所有可用循环信贷的信贷金额
  • totalAcc 借款人信用档案中当前的信用额度总数
  • initialListStatus 贷款的初始列表状态
  • applicationType 表明贷款是个人申请还是与两个共同借款人的联合申请
  • earliesCreditLine 借款人最早报告的信用额度开立的月份
  • title 借款人提供的贷款名称
  • policyCode 公开可用的策略_代码=1新产品不公开可用的策略_代码=2
  • n系列匿名特征 匿名特征n0-n14,为一些贷款人行为计数特征的处理

以上加粗部分,是个人觉得比较重要的特征。

©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页