题目:
Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.
The same repeated number may be chosen from candidates unlimited number of times.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [2,3,6,7], target = 7,
A solution set is:
[
[7],
[2,2,3]
]
Example 2:
Input: candidates = [2,3,5], target = 8,
A solution set is:
[
[2,2,2,2],
[2,3,3],
[3,5]
]
解法一:
写一个递归函数,这里我们新加入三个变量,start记录当前的递归到的下标,out为一个解,res保存所有已经得到的解,每次调用新的递归函数时,此时的target要减去当前数组的的数。
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> res;
combinationSumDFS(candidates, target, 0, {}, res);
return res;
}
void combinationSumDFS(vector<int>& candidates, int target, int start, vector<int> out, vector<vector<int>>& res) {
if (target < 0) return;
if (target == 0) {res.push_back(out); return;}
for (int i = start; i < candidates.size(); ++i) {
out.push_back(candidates[i]);
combinationSumDFS(candidates, target - candidates[i], i, out, res);
out.pop_back();
}
}
};
解法二:
也可以不使用额外的函数,就在一个函数中完成递归,还是要先给数组排序,然后遍历,如果当前数字大于target,说明肯定无法组成target,由于排过序,之后的也无法组成target,直接break掉。如果当前数字正好等于target,那么当前单个数字就是一个解,组成一个数组然后放到结果res中。然后我们将当前位置之后的数组取出来,调用递归函数,注意此时的target要减去当前的数字,然后我们遍历递归结果返回的二维数组,将当前数字加到每一个数组最前面,然后再将每个数组加入结果res即可。
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> res;
sort(candidates.begin(), candidates.end());
for (int i = 0; i < candidates.size(); ++i) {
if (candidates[i] > target) break;
if (candidates[i] == target) {res.push_back({candidates[i]}); break;}
vector<int> vec = vector<int>(candidates.begin() + i, candidates.end());
vector<vector<int>> tmp = combinationSum(vec, target - candidates[i]);
for (auto a : tmp) {
a.insert(a.begin(), candidates[i]);
res.push_back(a);
}
}
return res;
}
};
解法三:
也可以用迭代的解法来做,建立一个三维数组dp,这里dp[i]表示目标数为i的所有解法集合。这里的i就从1遍历到target即可,对于每个i,我们都新建一个二维数组cur,然后遍历candidates数组,如果遍历到的数字大于i,说明当前及之后的数字都无法组成i,直接break掉。否则如果相等,那么把当前数字自己组成一个数组,并且加到cur中。否则就遍历dp[i - candidates[j] - 1] 中的所有数组,如果当前数字大于数组的首元素,则跳过,因为我们的结果要求是要有序的。否则就将当前数字加入数组的开头,并且将数组放入cur之中即可。
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<vector<int>>> dp;
sort(candidates.begin(), candidates.end());
for (int i = 1; i <= target; ++i) {
vector<vector<int>> cur;
for (int j = 0; j < candidates.size(); ++j) {
if (candidates[j] > i) break;
if (candidates[j] == i) {cur.push_back({candidates[j]}); break;}
for (auto a : dp[i - candidates[j] - 1]) {
if (candidates[j] > a[0]) continue;
a.insert(a.begin(), candidates[j]);
cur.push_back(a);
}
}
dp.push_back(cur);
}
return dp[target - 1];
}
};