H - 全排列
给定一个由不同的小写字母组成的字符串,输出这个字符串的所有全排列。 我们假设对于小写字母有 'a' < 'b' < ... < 'y' < 'z',而且给定的字符串中的字母已经按照从小到大的顺序排列。
输入格式
输入只有一行,是一个由不同的小写字母组成的字符串,已知字符串的长度在 1 到 6 之间。
输出格式
输出这个字符串的所有排列方式,每行一个排列。要求字母序比较小的排列在前面。字母序如下定义:
已知 S=s1s2...sk,T=t1t2...tk,则 S<TS<T 等价于,存在 p(1≤p≤k)p(1≤p≤k),使得 s1=t1,s2=t2,...,sp−1=tp−1,sp<tp 成立。
Sample 1
Input
abc
Output
abc
acb
bac
bca
cab
cba
完整代码如下:
#include <stdio.h>
#include <string.h>
//C语言中全局变量在没有赋值前默认为0
char a[27],b[27];
int book[27];
int n;
void dfs(int step)//用step记录其位置
{
int i;
if(step==n)//当step=n时表示a数组中的所有元素已经全部排列一遍
{
//输出一种排列组合
puts(b);
return ;
}
for(i=0;i<n;i++)
{
if(book[i]==0)//book[i]是用来标记a[i]对应的元素是否已经存入过b中
{
b[step]=a[i];//将a[i]存入b中
book[i]=1;//标记
dfs(step+1);
book[i]=0;//取消标记这一步很关键
}
}
return ;
}
int main()
{
scanf("%s",a);
n=strlen(a);//得到其字符串的长度
dfs(0);
return 0;
}
I - 汉诺塔问题
约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上的盘全部移到中间的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面。
这是一个著名的问题,几乎所有的教材上都有这个问题。由于条件是一次只能移动一个盘,且不允许大盘放在小盘上面,所以64个盘的移动次数是:18,446,744,073,709,551,615
这是一个天文数字,若每一微秒可能计算(并不输出)一次移动,那么也需要几乎一百万年。我们仅能找出问题的解决方法并解决较小N值时的汉诺塔,但很难用计算机解决64层的汉诺塔。
假定圆盘从小到大编号为1, 2, ...
Input
输入为一个整数后面跟三个单字符字符串。
整数为盘子的数目,后三个字符表示三个杆子的编号。
Output
输出每一步移动盘子的记录。一次移动一行。
每次移动的记录为例如 a->3->b 的形式,即把编号为3的盘子从a杆移至b杆。
Sample
Input
2 a b c
Output
a->1->c
a->2->b
c->1->b
完整代码如下:
#include <stdio.h>
void hanio(int n,char a,char c,char b)
{
if(n==1)
{
printf("%c->%d->%c\n",a,n,b);
}
else{
hanio(n-1,a,b,c);
printf("%c->%d->%c\n",a,n,b);
hanio(n-1,c,a,b);
}
}
int main()
{
int n;char a,b,c;
scanf("%d %c %c %c",&n,&a,&b,&c);
hanio(n,a,c,b);
return 0;
}