情感语义分析-自然语言处理

本文探讨了情感语义分析在日常生活中的广泛应用,特别是在购物评论中的实践,通过自然语言处理技术来识别评论是好评还是差评,揭示了语义分析在理解中国文化多样性中的重要角色。
摘要由CSDN通过智能技术生成

情感语义分析在生活中真是太常见不过了,不管跟一个人相处,还是在网上购物,以及其它种种,都涉及了语义的多样性,可见是中国文化博大精深。这次,我做的是一个购物评论的语义分析,就是所谓的好评或者差评。

# 读入原始数据集
import pandas as pd
df_pos = pd.read_excel("D:/自然语言技术/购物评论.xlsx", sheet_name = "正向", header=None)
df_pos['y'] = 1
df_neg = pd.read_excel("D:/自然语言技术/购物评论.xlsx", sheet_name = "负向", header=None)
df_neg['y'] = 0
data = df_pos.append(df_neg, ignore_index = True)
data.head()

 

 

# 分词和预处理,生成list of list格式
import jieba
data['cut'] = data[0].apply(jieba.lcut)
data.head()

#划分训练集测试集
from sklearn.model_selec
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值