动态规划算法

从数学的视角来看,动态规划是一种运筹学方法,是在多轮决策过程中的最优方法。 

那么,什么是多轮决策呢?其实多轮决策的每一轮都可以看作是一个子问题。从分治法的视角来看,每个子问题必须相互独立。但在多轮决策中,这个假设显然不成立。这也是动态规划方法产生的原因之一

动态规划的基本方法

动态规划问题之所以难,是因为动态规划的解题方法并没有那么标准化,它需要你因题而异,仔细分析问题并寻找解决方案。虽然动态规划问题没有标准化的解题方法,但它有一些宏观层面通用的方法论

下面的 k 表示多轮决策的第 k 轮

  1. 分阶段,将原问题划分成几个子问题。一个子问题就是多轮决策的一个阶段,它们可以是不满足独立性的。
  2. 找状态,选择合适的状态变量 Sk。它需要具备描述多轮决策过程的演变,更像是决策可能的结果。
  3. 做决策,确定决策变量 uk。每一轮的决策就是每一轮可能的决策动作,例如 D2 的可能的决策动作是 D2 -> E2 和 D2 -> E3。
  4. 状态转移方程。这个步骤是动态规划最重要的核心,即 sk+1= uk(sk) 。
  5. 定目标。写出代表多轮决策目标的指标函数 Vk,n。
  6. 寻找终止条件

了解了方法论、状态、多轮决策之后,我们再补充一些动态规划的基本概念。

  • 策略,每轮的动作是决策,多轮决策合在一起常常被称为策略。
  • 策略集合,由于每轮的决策动作都是一个变量,这就导致合在一起的策略也是一个变量。我们通常会称所有可能的策略为策略集合。因此,动态规划的目标,也可以说是从策略集合中,找到最优的那个策略。

一般而言,具有如下几个特征的问题,可以采用动态规划求解

  1. 最优子结构。它的含义是,原问题的最优解所包括的子问题的解也是最优的。例如,某个策略使得 A 到 G 是最优的。假设它途径了 Fi,那么它从 A 到 Fi 也一定是最优的。
  2. 无后效性。某阶段的决策,无法影响先前的状态。可以理解为今天的动作改变不了历史。
  3. 有重叠子问题。也就是,子问题之间不独立。这个性质是动态规划区别于分治法的条件。如果原问题不满足这个特征,也是可以用动态规划求解的,无非就是杀鸡用了宰牛刀。

例:

以硬币找零问题作为例子,需要确定以下几点:

  • 初始化状态:由于动态规划是根据已经计算好的子问题推广到更大问题上去的,因此我们需要一个“原点”作为计算的开端。在硬币找零问题中,这个初始化状态是 memo[0]=0;
  • 状态参数:找出子问题与原问题之间会发生变化的变量。在硬币找零问题中,这个状态只有一个,就是剩余的目标兑换金额 k;
  • 状态存储:因为状态参数只有一个参数k,因此我们需要一个备忘录 memo[k+1],其中 memo[k]表示兑换k元所需的最小硬币数;
  • 决策与状态转移:改变状态,让状态不断逼近初始化状态的行为。在硬币找零问题中,挑一枚硬币,用来凑零钱,就会改变状态。

在硬币找零问题中,决策是指挑出需要硬币最少的那个结果。接着就是状态转移方程:

DP(n)= min(DP(n),1+DP(n−c)),c∈values​

c:每个硬币币值

Dp(n):当前状态值

Dp(n-c):前一个状态值

https://alchemist-al.com/algorithms/longest-common-subsequence

int getMinCounts(int k, int[] values) {
   int[] memo = new int[k + 1]; // 创建备忘录
   memo[0] = 0; // 初始化状态
   for (int i = 1; i < k + 1; i++) { memo[i] = k + 1; }
   
   for (int i = 1; i < k + 1; i++) {
       for (int coin : values) {
           if (i - coin < 0) { continue; }
           memo[i] = Math.min(memo[i], memo[i - coin] + 1); // 作出决策
       }
   }

   return memo[k] == k + 1 ? -1 : memo[k];
}

int getMinCountsDPSolAdvance() {
   int[] values = { 3, 5 }; // 硬币面值
   int total = 22; // 总值

   return getMinCounts(total, values); // 输出答案
}

dp(n)=dp(n-coin)+1,实际的面值就是coin。dp(11)=min{dp(10)+1,dp(9)+1,dp(6)+1}

图片

 最少硬币找零-动态规划 Coin Change Programming Dynamic Programming_哔哩哔哩_bilibili

最长回文子串

解决这类 “最优子结构” 问题,可以考虑使用 “动态规划”:

1、定义 “状态”;
2、找到 “状态转移方程”。

记号说明: 下文中,使用记号 s[l, r] 表示原始字符串的一个子串,lr 分别是区间的左右边界的索引值,使用左闭、右闭区间表示左右边界可以取到。举个例子,当 s = 'babad' 时,s[0, 1] = 'ba' ,s[2, 4] = 'bad'

1、定义 “状态”,这里 “状态”数组是二维数组。

dp[l][r] 表示子串 s[l, r](包括区间左右端点)是否构成回文串,是一个二维布尔型数组。即如果子串 s[l, r] 是回文串,那么 dp[l][r] = true

2、找到 “状态转移方程”。

首先,我们很清楚一个事实:

1、当子串只包含 11 个字符,它一定是回文子串;

2、当子串包含 2 个以上字符的时候:如果 s[l, r] 是一个回文串,例如 “abccba”,那么这个回文串两边各往里面收缩一个字符(如果可以的话)的子串 s[l + 1, r - 1] 也一定是回文串,即:如果 dp[l][r] == true 成立,一定有 dp[l + 1][r - 1] = true 成立。

根据这一点,我们可以知道,给出一个子串 s[l, r] ,如果 s[l] != s[r],那么这个子串就一定不是回文串。如果 s[l] == s[r] 成立,就接着判断 s[l + 1] 与 s[r - 1],这很像中心扩散法的逆方法。

事实上,当 s[l] == s[r] 成立的时候,dp[l][r] 的值由 dp[l + 1][r - l] 决定,这一点也不难思考:当左右边界字符串相等的时候,整个字符串是否是回文就完全由“原字符串去掉左右边界”的子串是否回文决定。但是这里还需要再多考虑一点点:“原字符串去掉左右边界”的子串的边界情况。

1、当原字符串的元素个数为 33 个的时候,如果左右边界相等,那么去掉它们以后,只剩下 11 个字符,它一定是回文串,故原字符串也一定是回文串;

2、当原字符串的元素个数为 22 个的时候,如果左右边界相等,那么去掉它们以后,只剩下 00 个字符,显然原字符串也一定是回文串。

把上面两点归纳一下,只要 s[l + 1, r - 1] 至少包含两个元素,就有必要继续做判断,否则直接根据左右边界是否相等就能得到原字符串的回文性。而“s[l + 1, r - 1] 至少包含两个元素”等价于 l + 1 < r - 1,整理得 l - r < -2,或者 r - l > 2

综上,如果一个字符串的左右边界相等,以下二者之一成立即可: 1、去掉左右边界以后的字符串不构成区间,即“ s[l + 1, r - 1] 至少包含两个元素”的反面,即 l - r >= -2,或者 r - l <= 2; 2、去掉左右边界以后的字符串是回文串,具体说,它的回文性决定了原字符串的回文性。

于是整理成“状态转移方程”:

dp[l, r] = (s[l] == s[r] and (l - r >= -2 or dp[l + 1, r - 1]))

或者

dp[l, r] = (s[l] == s[r] and (r - l <= 2 or dp[l + 1, r - 1]))

编码实现细节:因为要构成子串 l 一定小于等于 r ,我们只关心 “状态”数组“上三角”的那部分取值。理解上面的“状态转移方程”中的 (r - l <= 2 or dp[l + 1, r - 1]) 这部分是关键,因为 or 是短路运算,因此,如果收缩以后不构成区间,那么就没有必要看继续 dp[l + 1, r - 1] 的取值

读者可以思考一下:为什么在动态规划的算法中,不用考虑回文串长度的奇偶性呢。想一想,答案就在状态转移方程里面。

具体编码细节在代码的注释中已经体现。

class Solution:
    def longestPalindrome(self, s: str) -> str:
        size = len(s)
        if size <= 1:
            return s
        # 二维 dp 问题
        # 状态:dp[l,r]: s[l:r] 包括 l,r ,表示的字符串是不是回文串
        # 设置为 None 是为了方便调试,看清楚代码执行流程
        dp = [[False for _ in range(size)] for _ in range(size)]

        longest_l = 1
        res = s[0]

        # 因为只有 1 个字符的情况在最开始做了判断
        # 左边界一定要比右边界小,因此右边界从 1 开始
        for r in range(1, size):
            for l in range(r):
                # 状态转移方程:如果头尾字符相等并且中间也是回文
                # 在头尾字符相等的前提下,如果收缩以后不构成区间(最多只有 1 个元素),直接返回 True 即可
                # 否则要继续看收缩以后的区间的回文性
                # 重点理解 or 的短路性质在这里的作用
                if s[l] == s[r] and (r - l <= 2 or dp[l + 1][r - 1]):
                    dp[l][r] = True
                    cur_len = r - l + 1
                    if cur_len > longest_l:
                        longest_l = cur_len
                        res = s[l:r + 1]
            # 调试语句
            # for item in dp:
            #     print(item)
            # print('---')
        return res

说明:上面示例代码填写 dp 数组(二维状态数组)是按照“从左到右、从上到下”的方向依次填写的,当 “ s[l + 1, r - 1] 至少包含两个元素” 即 r - l > 2 时,dp[l, r] 的值要看 d[[l + 1, r - 1] ,即在 r - l > 2 的时候,dp[l, r] 的值看“左下角”的值,只要按照“从左到右、从上到下”的方向依次填写,当 r - l > 2 时,左下角就一定有值,这一点是动态规划算法得以有效的重要原因

根据一个具体例子,在草稿纸上写下(绘图)代码的运行流程,有时是够加深我们对算法的理解,并且也有助于调试代码。

复杂度分析:

  • 时间复杂度:�(�2)O(N​2​​)。
  • 空间复杂度:�(�2)O(N​2​​),二维 dp 问题,一个状态得用二维有序数对表示,因此空间复杂度是 �(�2)O(N​2​​)。

最短路径问题 

接下来。我们来看一个非常典型的例子,最短路径问题。如下图所示:

 

每个结点是一个位置,每条边是两个位置之间的距离。现在需要求解出一条由 A 到 G 的最短距离是多少。

不难发现,我们需要求解的路线是由 A 到 G,这就意味着 A 要先到 B,再到 C,再到 D,再到 E,再到 F。每一轮都需要做不同的决策,而每次的决策又依赖上一轮决策的结果。

例如,做 D2 -> E 的决策时,D2 -> E2 的距离为 1,最短。但这轮的决策,基于的假设是从 D2 出发,这就意味着前面一轮的决策结果是 D2。由此可见,相邻两轮的决策结果并不是独立的。

动态规划还有一个重要概念叫作状态。在这个例子中,状态是个变量,而且受决策动作的影响。例如,第一轮决策的状态是 S1,可选的值是 A,第二轮决策的状态是 S2,可选的值就是 B1 和 B2。以此类推。

动态规划的案例

到这里,动态规划的概念和方法就讲完了。接下来,我们以最短路径问题再来看看动态规划的求解方法。在这个问题中,你可以采用最暴力的方法,那就是把所有的可能路径都遍历一遍,去看哪个结果的路径最短的。如果采用动态规划方法,那么我们按照方法论来执行。

动态规划的求解方法

具体的解题步骤如下

1. 分阶段

很显然,从 A 到 G,可以拆分为 A -> B、B -> C、C -> D、D -> E、E -> F、F -> G,6 个阶段。

2. 找状态

第一轮的状态 S1 = A,第二轮 S2 = {B1,B2},第三轮 S3 = {C1,C2,C3,C4},第四轮 S4 = {D1,D2,D3},第五轮 S5 = {E1,E2,E3},第六轮 S6 = {F1,F2},第七轮 S7 = {G}。

3. 做决策

决策变量就是上面图中的每条边。我们以第四轮决策 D -> E 为例来看,可以得到 u4(D1),u4(D2),u4(D3)。其中 u4(D1) 的可能结果是 E1 和 E2。

4. 写出状态转移方程

在这里,就是 s**k+1 = u**k(s**k)。

5. 定目标

别忘了,我们的目标是总距离最短。我们定义 d**k(s**k,u**k) 是在 sk 时,选择 uk 动作的距离。例如,d5(E1,F1) = 3。那么此时 n = 7,则有,

就是最终要优化的目标。

6. 寻找终止条件
  • 很显然,这里的起止条件分别是,s1 = A 和 s7 = G。
  • 接下来,我们把所有的已知条件,凝练为上面的符号之后,只需要借助最优子结构,就可以把问题解决了。最优子结构的含义是,原问题的最优解所包括的子问题的解也是最优的。
  • 套用在这个例子的含义就是,如果 A -> ... -> F1 -> G 是全局 A 到 G 最优的路径,那么此处 A -> ... -> F1 也是 A 到 F1 的最优路径。
  • 因此,此时的优化目标 min Vk,7(s1=A, s7=G),等价于 min { Vk,6(s1=A, s6=F1)+4, Vk,6(s1=A, s6=F2)+3 }。
  • 此时,优化目标的含义为,从 A 到 G 的最短路径,是 A 到 F1 到 G 的路径和 A 到 F2 到 G 的路径中更短的那个。
  • 同样的,对于上面式子中,Vk,6(s1=A,s6=F1) 和 Vk,6(s1=A,s6=F2),仍然可以递归地使用上面的分析方法。
计算过程详解

好了,为了让大家清晰地看到结果,我们给出详细的计算过程。为了书写简单,我们把函数 Vk,7(s1=A, s7=G) 精简为 V7(G),含义为经过了 6 轮决策后,状态到达 G 后所使用的距离。我们把图片复制到这里一份,方便大家不用上下切换。

我们的优化目标为 min Vk,7(s1=A, s7=G),因此精简后原问题为,min V7(G)

因此,最终输出路径为 A -> B1 -> C2 -> D1 -> E2 -> F2 -> G,最短距离为 18

代码实现过程

接下来,我们尝试用代码来实现上面的计算过程。对于输入的图,可以采用一个 m x m 的二维数组来保存。在这个二维数组里,m 等于全部的结点数,也就是结点与结点的关系图。而数组每个元素的数值,定义为结点到结点需要的距离。

在本例中,可以定义输入矩阵 m(空白处为0),如下图所示:

代码如下:

public class testpath {
    public static int minPath1(int[][] matrix) {
        return process1(matrix, matrix[0].length-1);
    }
    // 递归
    public static int process1(int[][] matrix, int i) {
        // 到达A退出递归
        if (i == 0) {
            return 0;
        }
        // 状态转移
        else{
            int distance = 999;
            for(int j=0; j<i; j++){
                if(matrix[j][i]!=0){
                    int d_tmp = matrix[j][i] + process1(matrix, j);
                    if (d_tmp < distance){
                        distance = d_tmp;
                    }
                }
            }
            return distance;
        }
    }
    public static void main(String[] args) {
        int[][] m = {{0,5,3,0,0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,1,3,6,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,8,7,6,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,6,8,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,3,5,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,8,4,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,3,3,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,3,5,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,5,2,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,0},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3}};
        System.out.println(minPath1(m));
    }
}
代码解读

下面我们对这段代码进行解读

代码的 27 行是主函数,在代码中定义了二维数组 m,对应于输入的距离图。m 是 15 x 16 维的,我们忽略了最后一行的全 0(即使输入也不会影响结果)。

然后调用函数 minPath1在第 2 到第 4 行,它的内部又调用了 process1(matrix, matrix[0].length-1)。在这里,matrix[0].length-1 的值是 15,表示的含义是 matrix 数组的第 16 列(G)是目的地。

接着进入 process1 函数中。我们知道在动态规划的过程中,是从后往前不断地推进结果,这就是状态转移的过程。对应代码中的 13-24 行:

  • 第 15 行开始循环,j 变量是纵向的循环变量。
  • 第 16 行判断 matrix[j][i] 与 0 的关系,含义为,只有值不为 0 才说明两个结点之间存在通路。
  • 一旦发现某个通路,就需要计算其距离。计算的方式是 17 行的,d_tmp = matrix[j][i] + process1(matrix, j)。
  • 当得到了距离之后,还需要找到最短的那个距离,也就是 18 到 20 行的含义。这就是动态规划最优子结构的体现。
  • 一旦 i 减小到了 0,就说明已经到了起点 A。那么 A 到 A 的距离就是 0,直接第 10 行的 return 0 就可以了。
  • 经过运行,这段代码的输出结果是 18,这与我们手动的推导结果一致。

参考:

LeetCode 第 5 题:“最长回文子串”题解 | LeetCode 题解

 看一遍就理解:动态规划详解 - 掘金

动态规划详解进阶 算法-动态规划 Dynamic Programming--从菜鸟到老鸟_HankingHu的博客-CSDN博客

LeetCode 第 221 题:最大正方形(中等) | LeetCode 题解

https://github.com/labuladong/fucking-algorithm/blob/master/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%B3%BB%E5%88%97/%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98.md

13|动态规划算法设计的关键:最优子结构与状态依赖-极客时间

莱文斯坦距离 - 简书

什么是莱文斯坦距离(Levenshtein distance),它在计算机科学中有什么应用? - 知乎

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值