矩阵的算子范数的个人理解

矩阵的算子范数:

用来联系矩阵范数(正定,三角不等式,齐次,相容)和向量范数(正定,三角不等式,齐次)

定义 从属于向量a-范数的矩阵的算子范数 ||A||=max(||A|| ||x||a/(||x||a))

几何意义是:在给定向量的某范数定义下,矩阵作用于向量时,对向量的最大拉长倍数。

因此,对于从属于向量1,2,无穷范数的,若给出这三个范数为1的所有二维向量,矩阵作用方法是:纵坐标压缩,横坐标拉伸,然后旋转45度,则矩阵算子范数其几何意义如下图:



具体解释如上图。


杭州趋数网络科技有限公司   数据挖掘/数据分析师 花京华 



在Python中,我们可以使用numpy库来生成矩阵并计算各种范数。首先,让我们了解几种常见的向量和矩阵范数: 1. **欧几里得范数 (2-norm)** 或者 L2 范数,它是每个元素平方和的平方根。对于列向量 `v`,其L2范数表示为 `||v||_2 = sqrt(sum(v[i]**2))`。 2. **曼哈顿范数 (1-norm)** 或者 L1 范数,它是绝对值之和。对于列向量 `v`,其L1范数表示为 `||v||_1 = sum(abs(v[i]))`。 3. **无穷范数 (infinity norm)** 或者 L-infinity 范数,它是最大的绝对值。对于列向量 `v`,其L-inf范数表示为 `||v||_∞ = max(abs(v[i]))`。 4. **算子范数 (Operator Norm)** 对于矩阵,通常是指最大特征值。对于矩阵 `A`,它的算子范数可以理解为它的行或列的最大L2范数,即 `||A||_op = max(max(row_norms), max(col_norms))`。 以下是简单的代码示例: ```python import numpy as np def l2_norm(matrix): return np.linalg.norm(matrix, ord=2) def l1_norm(matrix): return np.sum(np.abs(matrix), axis=0) def linf_norm(matrix): norms = np.max(np.abs(matrix), axis=0) return np.max(norms) def operator_norm(matrix): row_norms = np.linalg.norm(matrix, axis=1, ord=2) col_norms = np.linalg.norm(matrix, axis=0, ord=2) return np.max([max(row_norms), max(col_norms)]) # 创建一个示例m*n矩阵 m, n = 5, 3 matrix = np.random.rand(m, n) # 计算各种范数 l2_result = l2_norm(matrix) l1_result = l1_norm(matrix) linf_result = linf_norm(matrix) operator_result = operator_norm(matrix) print(f"L2范数: {l2_result}") print(f"L1范数: {l1_result}") print(f"L-infinity范数: {linf_result}") print(f"算子范数: {operator_result}") ``` 运行此代码,你会得到矩阵对应的各种范数的值。请注意,实际使用时,你需要替换 `np.random.rand(m, n)` 为你的实际数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值