每天五分钟机器学习:python代码实现梯度下降算法

本文介绍了如何用Python编程实现梯度下降算法,该算法用于最小化损失函数。在理解逻辑回归和线性回归的基础上,重点讨论了如何计算参数的损失和偏导数,以进行参数更新。提供的代码示例展示了在简单线性回归模型中的应用,输出了最终参数和损失函数的历史记录。
摘要由CSDN通过智能技术生成

本文重点

前面的课程中,我们学习了逻辑回归算法和线性回归算法,这两种算法通俗来说就是一个解决分类问题,一个解决回归问题,两个算法目标函数不一样,然后损失函数也不一样,但是模型优化的本质都是一样的,都是最小化损失函数,本文学习一下如何编程实现梯度下降算法?

核心

假设我们现在有一个代价函数J(θ),而我们想要使用梯度下降算法使其最小化,我们需要编写一个代码,这个代码就是,当我们输入θ时,它会计算两样东西:

第一个:计算此时参数θ对应的损失J(θ)

第二个:此时J(θ)对此时参数θ的偏导数
在这里插入图片描述

假如我们已经完成了这两项,那么梯度下降算法就是反复执行下面参数更新
在这里插入图片描述

其实,就上图而言,对于梯度下降来说,其实我们并不需要编写代码来计算代价函数J(θ)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幻风_huanfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值