每天五分钟机器学习算法:拉格朗日乘数法和KKT条件

本文深入介绍了KKT条件和拉格朗日乘数法在机器学习,特别是支持向量机(SVM)中的应用。通过解析约束优化问题,阐述了KKT条件如何处理等式和不等式约束,并解释了拉格朗日乘数法在等式约束优化问题中的作用。文章指出,在SVM中,KKT条件确保了支持向量的重要性,而拉格朗日乘数法则帮助将有约束问题转化为无约束问题,为寻找目标函数的最小值提供了路径。最后,文章强调了强对偶性和凸优化问题在SVM中的关键角色。
摘要由CSDN通过智能技术生成

KKT条件

当我们要求一个函数的极值,同时还有两种类型的约束条件,一种约束条件是等式约束,另外一种约束是不等式约束:

 

x是一个变量(n维,n个样本),我们想要找到使得f(x)最大的x,还要满足上面的约束。此时KKT条件就出来说话了,如果要想让x满足这个条件下的f(x)的最大值(极值点),那么需要满足KKT条件,条件如下:

 

我们来解释一下这个KKT条件,在极值点处f的梯度是一系列的不等式gi(x*)和等式hj(x*)的线性组合,其中不等式的约束ui≥0,而等式的λi不做约束,gi(x*)有<0,和=0两种情况,但是如何<0,那么μi一定是0(其实此时对应的xi就是非支持向量),也就是说只有gi(x*)=0的时候,此时ui才不是0(此时对应的xi就是支持向量),换句话说,只有x*在边界gi(x*)=0的时候,此时的gi才会出现在加权式中,接下来我们可以看到,也就是说支持向量才会起作用。

拉格朗日乘数法

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幻风_huanfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值