每天五分钟深度学习PyTorch:Tensor张量的索引和切片

本文介绍了在PyTorch中如何对Tensor进行索引和切片操作,包括切片的基本用法,如a[:2]和a[:2,:2],以及不同类型的索引方式,如index_select、take和masked_select。这些技术对于处理和提取Tensor特定维度的信息至关重要。" 80963858,7778221,Python合格率计算实践,"['Python', '编程练习', '数据处理']
摘要由CSDN通过智能技术生成

本文重点

有时候当我们拥有一个Tensor张量的时候,我们可能需要获取它某一维度的信息,那么此时我们就需要索引和切片的技术,它们可以帮助我们解决这些问题。

切片操作

a是四维的,然后默认是从第一维开始取,逗号表示取不同的维度

a[:2]表示第一维取0,1,后面三维取所有

a[:2,:2]表示第一维取0,1,第二维取0,1,后面两维取所有

前两维取所有,第三维和第四维间隔取样,0到28,每两维取样一次

0:28:2等于::2

索引下标

通过下标进行索引

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幻风_huanfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值