每天五分钟玩转深度学习PyTorch:获取神经网络模型的子网络模型

本文重点

本文主要为第二步(模型搭建)和第六步(优化器)服务,因为子网络是网络模型的一部分,我们如何获取自网络,需要了解网络的模型结构,然后再优化器部分我们需要获取指定网络模型部分的模型参数,所以本节课程很重要。

named_children

import torch
from torch import nn
class BasicNet(nn.Module):
 def __init__(self):
 super(BasicNet, self).__init__()
 self.net = nn.Linear(4, 3)
 def forward(self, x):#自定义的网络或者层一定要写forward方法
 return self.net(x)
 
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.net = nn.Sequential(
 BasicNet(),
 nn.ReLU(),
 nn.Linear(3, 2)) 
 def forward(self,x):
 return self.net(x)
 
net = Net()
for name, t in net.named_children():
 print('parameters:', name, t)
 print('parameters1:', name, t[0])
 print('parameters1:', nam
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幻风_huanfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值