人工智能之数学基础:基于正交变换将矩阵对角化

本文重点

如果矩阵A的特征向量构成的矩阵P可逆,那么矩阵A是一定可以被对角化的。但是如果矩阵P不可逆,那么是一定不可以被对角化的。

我们前面还学过了如果一个矩阵A是实对称矩阵,那么这个矩阵是一定可以被对角化的,我们可以通过一个正交矩阵(正交矩阵一定是可逆的)将矩阵A对角化,现在的问题是如何找到这个正交矩阵来完成对实对称矩阵A的对角化?

实对称矩阵的对角化

实对称矩阵的特征值都是实数,实对称矩阵的对应于不同特征值的特征向量是正交的,如果相同的特征值要想也是正交的,需要我们人为的进行正交化处理,然后将所有特征向量单位化,就可以得到一组标准正交基,可以以它们为列构造相似变换矩阵P,矩阵P就是正交矩阵。

A为实对称矩阵, 则存在正交矩阵Q, 使QAQ为对角矩阵

不同特征值得对角化矩阵

此时它的特征值λ1=-1,λ2=2,λ3=5。它们对应的特征向量分别为&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值