本文重点
如果矩阵A的特征向量构成的矩阵P可逆,那么矩阵A是一定可以被对角化的。但是如果矩阵P不可逆,那么是一定不可以被对角化的。
我们前面还学过了如果一个矩阵A是实对称矩阵,那么这个矩阵是一定可以被对角化的,我们可以通过一个正交矩阵(正交矩阵一定是可逆的)将矩阵A对角化,现在的问题是如何找到这个正交矩阵来完成对实对称矩阵A的对角化?
实对称矩阵的对角化
实对称矩阵的特征值都是实数,实对称矩阵的对应于不同特征值的特征向量是正交的,如果相同的特征值要想也是正交的,需要我们人为的进行正交化处理,然后将所有特征向量单位化,就可以得到一组标准正交基,可以以它们为列构造相似变换矩阵P,矩阵P就是正交矩阵。
设A为实对称矩阵, 则存在正交矩阵Q, 使Q逆AQ为对角矩阵
不同特征值得对角化矩阵
此时它的特征值λ1=-1,λ2=2,λ3=5。它们对应的特征向量分别为&#x