每天五分钟深度学习框架pytorch:BatchNorm1d和BatchNorm2d的使用

batchNorm的优点

  • 更快的训练速度:由于 BatchNorm 的权重分布差异很小,我们可以使用更高的学习率来训练网络,让我们朝向损失函数最小的方向前进。
  • 改进网络正则化:通过 BatchNorm 可以使网络在训练的时候,每个 batch 里的数据规范化都是不一样的,有助于减少网络过拟合。

原理

使用这种归一化技术可以保证网络每次接受的输入都是均值 0 标准差 1

BatchNorm1d

class torch.nn.BatchNorm1d(num_features, eps=1e-05, momentum=0.1, affine=True)

参数解析:

num_features: 来自期望输入的特征数,该期望输入的大小为[batch_size,num_features [width]],width可有可无
eps: 为保证数值稳定性(分母不能趋近或取0),给分母加上的值。默认为1e-5。
momentum:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值