batchNorm的优点
- 更快的训练速度:由于 BatchNorm 的权重分布差异很小,我们可以使用更高的学习率来训练网络,让我们朝向损失函数最小的方向前进。
- 改进网络正则化:通过 BatchNorm 可以使网络在训练的时候,每个 batch 里的数据规范化都是不一样的,有助于减少网络过拟合。
原理
使用这种归一化技术可以保证网络每次接受的输入都是均值 0 标准差 1
BatchNorm1d
class torch.nn.BatchNorm1d(num_features, eps=1e-05, momentum=0.1, affine=True)
参数解析:
num_features: 来自期望输入的特征数,该期望输入的大小为[batch_size,num_features [width]],width可有可无
eps: 为保证数值稳定性(分母不能趋近或取0),给分母加上的值。默认为1e-5。
momentum: