本文重点
矩阵分解是线性代数的核心工具,广泛应用于数据分析、信号处理、机器学习等领域。特征值分解与奇异值分解在数学定义、适用范围、几何意义、计算方法、应用场景及稳定性方面存在显著差异。EVD 适用于方阵,强调矩阵的固有属性;SVD 适用于任意矩阵,揭示矩阵的内在结构。实际应用中,应根据矩阵类型与问题需求选择合适的分解技术。
数学定义与公式
特征值分解与奇异值分解作为两种经典方法,分别针对方阵与任意矩阵,揭示矩阵的本质特性。深入理解两者的差异,有助于选择合适的分解技术解决实际问题。
- 特征值分解:
设 A 为 n×n 方阵,若存在标量 λ 及非零向量 v,使得 Av=λv,则称 λ 为特征值,v 为对应特征向量。矩阵 A 可分解为:A=QΛQ−1其中 Q 为特征向量组成的正交矩阵,Λ 为对角矩阵(对角线元素为特征值)。 - 奇异值分解:
设 A 为 m×n 矩阵,则存在正交矩阵 U(m×m)、V(n×n)及对角矩