每天五分钟机器学习:凸优化

本文重点

凸优化作为一类特殊的数学优化问题,因其理论完备性和计算高效性,在人工智能领域发挥着至关重要的作用。从经典的逻辑回归到深度神经网络的初始化,从支持向量机的核技巧到强化学习的策略优化,凸优化理论不仅为算法提供了坚实的数学基础,还直接推动了人工智能模型的性能边界。

凸优化的数学原理

凸优化的研究对象是定义在凸集上的凸函数。凸集和凸函数的组合保证了优化问题的“友好性”——任何局部最优解即为全局最优解,这一性质为算法设计提供了极大便利。

凸优化问题的标准形式

凸优化问题可表示为:

其中 f0,f1​,…,fm​ 为凸函数,h1​,…,hp​ 为仿射函数(形如 h(x)=aTx+b)。该问题的可行域为凸集,目标函数为凸函数,因此任一局部极小点即为全局极小点。

凸优化问题:

  • 目的是求取目标函数的最小值;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值