陈越《数据结构》第一讲 基本概念

陈越《数据结构》第一讲 基本概念


1什么是数据结构


1.1 引子

例子:如何在书架上摆放图书?

  1. 随便放;
  2. 按照书名的拼音字母顺序排放;
  3. 把书架划分成几块区域,每块区域指定摆放某种类别的图书;在每种类别内,按照书名的拼音字母顺序排放。

解 决 问 题 方 法 的 效 率 , 跟 数 据 的 组 织 方 式 有 关 。 \color{red}{解决问题方法的效率, 跟数据的组织方式有关。}

例2:写程序实现一个函数PrintN,使得传入一个正整数为N的参数后,能顺序打印从1到N的全部正整数。

  1. 循环实现;
  2. 递归实现。//数值从 10 到 1 0 6 10到10^6 10106
    解 决 问 题 方 法 的 效 率 , 跟 空 间 的 利 用 效 率 有 关 。 \color{red}{解决问题方法的效率, 跟空间的利用效率有关。}

例3:写程序计算给定多项式在给定点x处的值。

  1. 利用 p + = ( a [ i ] ∗ p o w ( x , i ) ) ; p += (a[i] * pow(x, i)); p+=(a[i]pow(x,i));进行计算;

  2. 秦九韶利用 p = a [ i − 1 ] + x ∗ p ; p = a[i-1] + x*p; p=a[i1]+xp;进行计算;
    用 time.h中的常数CLK_TCK,clock_t start, stop;计算时间。
    解 决 问 题 方 法 的 效 率 , 跟 算 法 的 巧 妙 程 度 有 关 。 \color{red}{解决问题方法的效率, 跟算法的巧妙程度有关。}

即:解决问题方法的效率,跟数据的组织方式、跟空间的利用效率和跟算法的巧妙程度有关。

数据结构是:

  1. 数 据 对 象 \color{red}{数据对象} 在计算机中的组织方式(逻辑结构、物理存储结构);
    2.数据对象必定与一系列加在其上的 操 作 \color{red}{操作} 相关联;
    3.完成这些操作所用的方法就是 算 法 \color{red}{算法}

1.2 抽象数据类型

数据结构

  • 数据对象在计算机中的组织方式(逻辑结构、物理存储结构);
  • 数据对象操作的关联关系;
  • 数据对象的最高效算法。

抽象数据类型

数据类型

  • 数据对象集;
  • 数据集合相关联的操作集。

抽象(描述数据类型的方法不依赖于具体实现)

  • 与存放数据的机器无关;
  • 与数据存储的物理结构无关;
  • 与实现操作的算法和编程语言均无关。

2. 什么是算法

算 法 ( A l g o r i t h m ) \color{red}{算法(Algorithm )} Algorithm定义:

  1. 一个有限指令集;
  2. 接受一些输入(有些情况下不需要输入);
  3. 产生输出(必须);
  4. 一定在有限步骤之后终止;
  5. 每一条指令必须:
    • 有充分明确的目标,不可以有歧义;
    • 计算机能处理的范围之内;
    • 描述应不依赖于任何一种计算机语言以及具体的实现手段。

2.1什么是好的算法?

  • 空 间 复 杂 度 S ( n ) \color{red}{空间复杂度S(n)} S(n) 占用存储单元的长度。
  • 时 间 复 杂 度 T ( n ) \color{red}{时间复杂度T(n)} T(n) 耗费时间的长度。

在例3中,第一种方法的时间复杂度是 T ( n ) = C 1 n 2 + C 2 n T(n) = C_1n^2+C_2n T(n)=C1n2+C2n;秦九韶的时间复杂度是 T ( n ) = C . n T(n) =C.n T(n)=C.n

在分析一般算法的效率时,我们经常关注下面两种复杂度:

  • 最 坏 情 况 复 杂 度 \color{red}{最坏情况复杂度} T w o r s t ( n ) T_{worst}( n ) Tworst(n);
  • 平 均 复 杂 度 \color{red}{平均复杂度} T a v g ( n ) T_{avg}( n ) Tavg(n)
    其中我们最关心 最 坏 情 况 复 杂 度 \color{red}{最坏情况复杂度}

2.2 一些基本概念


复 杂 度 的 渐 进 表 示 法 \color{red}{复杂度的渐进表示法}

  • 上界 T ( n ) = O ( f ( n ) ) T(n) = O(f(n)) T(n)=O(f(n))
  • 下界 T ( n ) = Ω ( g ( n ) ) T(n) = Ω(g(n)) T(n)=Ω(g(n))
  • 上下界等价 T ( n ) = Θ ( h ( n ) ) ; Θ ( h ( n ) ) = O ( f ( n ) ) , Θ ( h ( n ) ) = Ω ( g ( n ) ) T(n) = Θ(h(n));Θ(h(n))=O(f(n)),Θ(h(n))=Ω(g(n)) T(n)=Θ(h(n));Θ(h(n))=O(f(n))Θ(h(n))=Ω(g(n))
    我 们 写 O ( f ( n ) ) 时 , 是 写 最 小 上 界 , 写 Ω ( g ( n ) 时 , 是 写 最 大 下 界 , 这 样 才 有 意 义 。 \color{red}{我们写{O(f(n))}时,是写最小上界,写Ω(g(n)时,是写最大下界,这样才有意义。} O(f(n))Ω(g(n)

这里写图片描述

复 杂 度 的 渐 进 表 示 法 \color{red}{复杂度的渐进表示法}

  1. 若两段算法分别有复杂度 T 1 ( n ) = O ( f 1 ( n ) ) T_1(n) = O(f_1(n)) T1(n)=O(f1(n)) T 2 ( n ) = O ( f 2 ( n ) ) T_2(n) =O(f_2(n)) T2(n)=O(f2(n)),则:
  • T 1 ( n ) + T 2 ( n ) = m a x ( O ( f 1 ( n ) ) , O ( f 2 ( n ) ) ) T_1(n)+T_2(n)=max( O(f_1(n)),O(f_2(n))) T1(n)+T2(n)=max(O(f1(n)),O(f2(n)));
  • T 1 ( n ) ∗ T 2 ( n ) = O ( f 1 ( n ) ∗ f 2 ( n ) ) 。 T_1(n) * T_2(n) = O( f_1(n) * f_2(n) )。 T1(n)T2(n)=O(f1(n)f2(n))
  1. T ( n ) T(n) T(n)是关于 n 的 k 阶 多 项 式 \color{red}{n的k阶多项式} nk,那么起作用的是最大项,即 T ( n ) = Θ ( n k ) ; \color{red}{T(n)=Θ(n^k);} T(n)=Θ(nk);

  2. 一 个 f o r 循 环 的 时 间 复 杂 度 \color{red}{一个for循环的时间复杂度} for等于 循 环 次 数 \color{red}{循环次数} 乘以 循 环 体 代 码 的 复 杂 度 ; \color{red}{循环体代码的复杂度;}

  3. i f − e l s e 结 构 \color{red}{if-else 结构} ifelse的复杂度取决于if的条件判断复杂度和两个分枝部分的复杂度, 总 体 复 杂 度 取 三 者 中 最 大 ; \color{red}{总体复杂度取三者中最大;}

  4. O ( n 2 ) 复 杂 度 的 算 法 本 能 的 优 化 为 O ( n l o g n ) 。 \color{red}{O(n^2)复杂度的算法本能的优化为O(n log n)。} O(n2)O(nlogn)


3.应用实例:最大子列和问题


应用实例:最大子列和问题

01 - 复杂度1 最大子列和问题(20分)
例如给定序列 { − 2 , 11 , − 4 , 13 , − 5 , − 2 } \{ -2, 11, -4, 13, -5, -2 \} {2,11,4,13,5,2},其连续子列 { 11 , − 4 , 13 } \{ 11, -4, 13 \} {11,4,13}有最大的和 20 20 20。现要求你编写程序,计算给定整数序列的最大子列和。

  • 本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:
    • 数据1:与样例等价,测试基本正确性;
    • 数据2: 1 0 2 10^2 102个随机整数;
    • 数据3: 1 0 3 10^3 103个随机整数;
    • 数据4: 1 0 4 10^4 104个随机整数;
    • 数据5: 1 0 5 10^5 105个随机整数;
  • 输入格式 :
    输入第1行给出正整数K(≤100000);第2行给出K个整数,其间以空格分隔。
  • 输出格式 :
    在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。
  • 输入样例 :

    6
    -2 11 -4 13 -5 -2

  • 输出样例 :

    20

解 决 方 法 : \color{red}{解决方法}: :

  1. 时间复杂度为 T ( N ) = O ( N 3 ) T( N ) = O( N^3 ) T(N)=O(N3);
  2. 时间复杂度为 T ( N ) = O ( N 2 ) T( N ) = O( N^2 ) T(N)=O(N2);
  3. 时间复杂度为 T ( N ) = O ( N l o g N ) T( N ) = O( N logN ) T(N)=O(NlogN);(分而治之)
  4. 时间复杂度为 T ( N ) = O ( N ) T( N ) = O( N ) T(N)=O(N)。(在线处理)

时间复杂度为 T ( N ) = O ( N 2 ) T( N ) = O( N^2 ) T(N)=O(N2)的代码:

#include<stdio.h>
#include<iostream>

#define MAXN 100000
int arr[MAXN];

int MaxSubseqSum(int A[], int N);

int main()
{
	int i, n;

	scanf("%d",&n);
	for (i = 0; i < n; i++)
		scanf("%d",&arr[i]);
	printf("%d\n",MaxSubseqSum(arr,n));
	system("pause");
	return 0;
}

int MaxSubseqSum(int A[], int N)
{
	int ThisSum, MaxSum = 0;
	int i, j;

	for (i = 0; i < N; i++)
	{
		ThisSum = 0;
		for (j = i; j < N; j++)
		{
			ThisSum = ThisSum + A[j];
			if (ThisSum > MaxSum)
				MaxSum = ThisSum;
		}		
	}
	return MaxSum;
}

分而治之的代码:

#include<stdio.h>
#include<iostream>
#define MAXN 100000
int arr[MAXN + 10];

int maxThree(int a,int b,int c);
int maxSubSeq(int arr[],int low,int height);
int maxSubSeq1(int arr[],int n);
int main()
{
	int i, n;
    
    scanf("%d", &n);
    for(i = 0; i < n; i++)
        scanf("%d", &arr[i]); 
	printf("%d\n", maxSubSeq(arr, 0, n-1));
	system("pause");
    return 0;
}
int maxSubSeq1(int arr[],int n)
{
	int i = 0, iThisSum = 0, iMaxSum = 0;
	 for(i = 0; i < n; i++)
    {
        iThisSum += arr[i];
		if(iThisSum > iMaxSum) iMaxSum = iThisSum;
        else if(iThisSum < 0) iThisSum = 0;
    }
	 return iMaxSum;
}
int maxSubSeq(int arr[], int low, int height)
{
	int i = 0, iMid = 0, iThisSum = 0, iLeftMax = 0, iRightMax = 0, iLeftMaxSum = 0, iRightMaxSum = 0;
	if(low >= height) return arr[low];
	iMid = (low + height)/2;
	iLeftMax = maxSubSeq(arr,low,iMid);//左边最大
	iRightMax = maxSubSeq(arr,(iMid+1),height);//右边最大
	//中间(跨越)最大
	iThisSum = iLeftMaxSum = 0;
	for(i = iMid ; i >low ; i-- )
	{
		iThisSum += arr[i];
		if(iThisSum > iLeftMaxSum) iLeftMaxSum = iThisSum;
	}
	iThisSum = iRightMaxSum = 0;
	for(i = iMid ; i <height ; i++)
	{
		iThisSum += arr[i];
		if(iThisSum > iRightMaxSum) iRightMaxSum = iThisSum;
	}

	return maxThree(iLeftMax , iRightMax, (iRightMaxSum + iLeftMaxSum));

}
int maxThree(int a,int b,int c)
{
	int max = a;
	if(b > max) max = b;
	if(c > max) max = c;
	return max;
}
  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值