### install mxnet of GPU on centos
# Prerequisites:
1. Install CUDA 8.0 following the NVIDIA’s installation guide(http://docs.nvidia.com/cuda/cuda-installation-guide-linux/)
2. Install cuDNN 5 for CUDA 8.0 following the NVIDIA’s installation guide. You may need to register with NVIDIA for downloading the cuDNN library.
https://developer.nvidia.com/cudnn
note:Make sure to add CUDA install path to LD_LIBRARY_PATH.
export LD_LIBRARY_PATH=/usr/local/cuda/lib64/:$LD_LIBRARY_PATH
# Building MXNet from source is a 2 step process.
# 1. Build the MXNet core shared library, libmxnet.so, from the C++ sources.
# 2. Build the language specific bindings. Example - Python bindings, Scala bindings.
#Build the MXNet core shared library
#Step 1. Install build tools and git.
sudo yum update
sudo yum install -y build-essential git
#Step 2. Install OpenBLAS.
sudo yum install -y libopenblas-dev liblapack-dev
#Step 3. Install OpenCV.
sudo yum install -y libopencv-dev
#Step 4. Download MXNet sources and build MXNet core shared library.
sudo git clone --recursive https://github.com/apache/incubator-mxnet.git mxnet --branch 0.11.0
cd mxnet
sudo make -j $(nproc) USE_OPENCV=1 USE_BLAS=openblas USE_CUDA=1 USE_CUDA_PATH=/usr/local/cuda-8.0 USE_CUDNN=1
#Install the MXNet Python binding
#Step 1. Install prerequisites - python, setup-tools, python-pip and numpy.
sudo yum install -y python-dev python-setuptools python-numpy python-pip
#Step 2. Install the MXNet Python binding.
cd python
sudo pip install --upgrade pip
sudo pip install -e .
#Step 3. Install Graphviz.
sudo yum install graphviz
#Validate MXNet Installation
python
import mxnet as mx
### 实例setup
python train_mnist.py --gpus 0
citing:
https://mxnet.incubator.apache.org/get_started/install.html
# Prerequisites:
1. Install CUDA 8.0 following the NVIDIA’s installation guide(http://docs.nvidia.com/cuda/cuda-installation-guide-linux/)
2. Install cuDNN 5 for CUDA 8.0 following the NVIDIA’s installation guide. You may need to register with NVIDIA for downloading the cuDNN library.
https://developer.nvidia.com/cudnn
note:Make sure to add CUDA install path to LD_LIBRARY_PATH.
export LD_LIBRARY_PATH=/usr/local/cuda/lib64/:$LD_LIBRARY_PATH
# Building MXNet from source is a 2 step process.
# 1. Build the MXNet core shared library, libmxnet.so, from the C++ sources.
# 2. Build the language specific bindings. Example - Python bindings, Scala bindings.
#Build the MXNet core shared library
#Step 1. Install build tools and git.
sudo yum update
sudo yum install -y build-essential git
#Step 2. Install OpenBLAS.
sudo yum install -y libopenblas-dev liblapack-dev
#Step 3. Install OpenCV.
sudo yum install -y libopencv-dev
#Step 4. Download MXNet sources and build MXNet core shared library.
sudo git clone --recursive https://github.com/apache/incubator-mxnet.git mxnet --branch 0.11.0
cd mxnet
sudo make -j $(nproc) USE_OPENCV=1 USE_BLAS=openblas USE_CUDA=1 USE_CUDA_PATH=/usr/local/cuda-8.0 USE_CUDNN=1
#Install the MXNet Python binding
#Step 1. Install prerequisites - python, setup-tools, python-pip and numpy.
sudo yum install -y python-dev python-setuptools python-numpy python-pip
#Step 2. Install the MXNet Python binding.
cd python
sudo pip install --upgrade pip
sudo pip install -e .
#Step 3. Install Graphviz.
sudo yum install graphviz
#Validate MXNet Installation
python
import mxnet as mx
### 实例setup
sudo python setup.py install
python train_mnist.py --gpus 0
citing:
https://mxnet.incubator.apache.org/get_started/install.html