### 思路
1. **输入读取**:
- 读取 `n`,`a` 和 `b`。
- 读取每个气球的坚韧度。
2. **计算最少释放次数**:
- 使用二分查找来确定最少的释放次数。
- 每次释放武器时,选择一个气球多承受 `a` 点伤害,其他气球承受 `b` 点伤害。
- 判断在给定次数内是否可以将所有气球的坚韧度降为0。
### 伪代码
1. 读取 `n`,`a`,`b` 和气球坚韧度数组 `durability`。
2. 定义二分查找的左右边界 `left` 和 `right`。
3. 在二分查找的过程中:
- 计算中间值 `mid`。
- 初始化 `total_damage` 为 0。
- 遍历每个气球,计算需要的额外伤害次数。
- 如果 `total_damage` 小于等于 `mid`,则更新右边界,否则更新左边界。
4. 输出最少的释放次数。
### C++代码
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
bool canDestroyAllBalloons(const vector<long long>& durability, long long n, long long a, long long b, long long mid) {
long long total_damage = 0;
for (long long i = 0; i < n; ++i) {
long long required_damage = durability[i] - mid * b;
if (required_damage > 0) {
total_damage += (required_damage + a - 1) / a;
}
if (total_damage > mid) {
return false;
}
}
return true;
}
int main() {
long long n, a, b;
cin >> n >> a >> b;
vector<long long> durability(n);
for (long long i = 0; i < n; ++i) {
cin >> durability[i];
}
long long left = 0, right = *max_element(durability.begin(), durability.end()) / b + 1;
while (left < right) {
long long mid = (left + right) / 2;
if (canDestroyAllBalloons(durability, n, a, b, mid)) {
right = mid;
} else {
left = mid + 1;
}
}
cout << left << endl;
return 0;
}