Spark SQL性能调优以及原理图

之前使用在Spark Core中的数据倾斜解决方案,全部都可以直接套用在Spark SQL上:

1、聚合源数据

2、过滤导致倾斜的key

3、提高shuffle并行度:spark.sql.shuffle.partitions

4、双重group by

5、reduce join转换为map join:spark.sql.autoBroadcastJoinThreshold

6、采样倾斜key并单独进行join

7、随机key与扩容表

由于Spark的这种都是基于RDD的特性;哪怕是Spark SQL,原本你是用纯的SQL来实现的;各位想一想,其实你用纯RDD,也能够实现一模一样的功能。

-------------------------

我们要讲一下,之前讲解的方案,如果是用纯的Spark SQL来实现,应该如何来实现。

1、聚合源数据:Spark Core和Spark SQL没有任何的区别

2、过滤导致倾斜的key:在sql中用where条件

3、提高shuffle并行度:spark core 方式:groupByKey(1000),  spark sql :spark.sql.shuffle.partitions(默认是200)

4、双重group by:改写SQL,两次group by(复杂sql)

5、reduce join转换为map join:spark.sql.autoBroadcastJoinThreshold(默认是10485760 )   你可以自己将表做成RDD,自己手动去实现map join   Spark SQL内置的map join,默认是如果有一个小表,是在10M以内,默认就会将该表进行broadcast,然后执行map join;调节这个阈值,比如调节到20M、50M、甚至1G。20 971 520

6、采样倾斜key并单独进行join:强制纯Spark Core的一种方式,因为sample、filter等算子太麻烦复杂

7、随机key与扩容表:Spark SQL+Spark Core

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值