AI大模型全栈工程师课程笔记 - LangChain(文末附大模型入门文档)

LangChain 也是面向LLM的开发框架SDK,有 python 和 js 版的 https://python.langchain.com/docs/get_started

在这里插入图片描述

在这里插入图片描述

1. 模型 IO 封装

代码语言:javascript

pip install langchain  # 0.0.350
  • 模型封装

代码语言:javascript

from langchain.llms import OpenAI
# 设置环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv('../utils/.env'))

from langchain.chat_models import ChatOpenAI

llm = OpenAI()  # 默认是text-davinci-003模型
llm.predict("你好,欢迎")
# '你来到这里!\n\n很高兴认识你!'

chat_model = ChatOpenAI()  # 默认是gpt-3.5-turbo
chat_model.predict("你好,欢迎")
# '你好!欢迎来到这里!有什么我可以帮助你的吗?'

无缝替换 百度模型 ErnieBotChat

代码语言:javascript

from langchain.chat_models import ErnieBotChat
from langchain.schema import HumanMessage

chat_model = ErnieBotChat()

messages = [
    HumanMessage(content="你是谁") 
]

chat_model(messages)
  • 多轮对话封装

代码语言:javascript

from langchain.schema import (
    AIMessage, #等价于OpenAI接口中的assistant role
    HumanMessage, #等价于OpenAI接口中的user role
    SystemMessage #等价于OpenAI接口中的system role
)

messages = [
    SystemMessage(content="你是谷歌的大模型Gemini,你需要友好的回答用户的问题。"), 
    HumanMessage(content="我想python入门,请你给出学习计划") 
]
chat_model(messages) 
# AIMessage(content='当然!学习Python是一个很好的开始。以下是一个基本的学习计划,帮助你入门Python:\n\n1. 了解基础知识:首先,你可以通过阅读一些关于Python的基础知识的教程或书籍来了解Python的语法、数据类型、条件语句和循环等基本概念。\n\n2. 实践编程:通过编写一些简单的程序来巩固所学的知识。你可以尝试解决一些简单的编程问题,例如计算器程序、猜数字游戏等。\n\n3. 学习面向对象编程:Python是一种面向对象的编程语言,学习面向对象编程是非常重要的。你可以学习类、对象、继承、多态等概念,并在自己的代码中应用它们。\n\n4. 掌握常用模块和库:Python有很多强大的模块和库,可以帮助你更高效地开发应用程序。一些常用的模块包括NumPy、Pandas、Matplotlib等,你可以学习它们的用法并在实际项目中使用它们。\n\n5. 解决实际问题:找一些实际的问题,尝试用Python解决它们。这样可以帮助你将所学的知识应用到实际情境中,并提高你的编程能力。\n\n6. 参与项目或开源社区:参与开源项目或社区可以帮助你与其他开发者交流,并提升你的编程技能。你可以寻找一些适合你水平的项目,与其他开发者合作,共同完成项目。\n\n7. 持续学习和实践:编程是一个不断学习和实践的过程,持续学习和实践可以让你不断提高。保持对新技术和最佳实践的关注,并尝试将它们应用到你的项目中。\n\n记住,学习编程是一个长期的过程,需要坚持和耐心。祝你在学习Python的过程中取得成功!如果你有任何问题,随时向我提问。')
2. 输入输出封装
  • 提示词模板

代码语言:javascript

from langchain.prompts import PromptTemplate

template = PromptTemplate.from_template("给我讲个关于{subject}{things}的笑话")
print(template.input_variables)  # ['subject', 'things']
print(template.format(subject='小明',things='小王'))
# 给我讲个关于小明小王的笑话
  • 对话模板

代码语言:javascript

from langchain.prompts import ChatPromptTemplate
from langchain.prompts.chat import SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chat_models import ChatOpenAI

template = ChatPromptTemplate.from_messages(
    [
        SystemMessagePromptTemplate.from_template("你是{product}的客服助手。你的名字叫{name}"),
        HumanMessagePromptTemplate.from_template("{query}"),
    ]
)

llm = ChatOpenAI()
prompt = template.format_messages(
        product="AIGC课程",
        name="小爱",
        query="你好,我想学习AIGC课程"
    )

llm(prompt)
# AIMessage(content='你好!非常欢迎你对AIGC课程感兴趣。AIGC课程是一门人工智能基础课程,旨在帮助学员掌握人工智能的基本概念、技术和应用。\n\n如果你想学习AIGC课程,我可以为你提供以下信息:\n1. 课程内容:AIGC课程包括人工智能基础知识、机器学习、深度学习、自然语言处理、计算机视觉等方面的内容。\n2. 学习方式:AIGC课程提供在线学习,你可以根据自己的时间和进度来学习课程内容。\n3. 学习资源:AIGC课程提供视频教程、学习笔记、练习题等学习资源,帮助学员更好地理解和掌握课程内容。\n4. 学习支持:我们提供学习支持,包括学习群组、论坛和定期答疑活动,帮助学员解决学习中的问题。\n\n如果你有更具体的问题或需要更多信息,可以告诉我,我会尽力帮助你。')
  • 从文件加载prompt模板

yaml 格式

代码语言:javascript

_type: prompt
input_variables:
  ["adjective", "content"]
template:
  Tell me a {adjective} joke about {content}.

json格式

代码语言:javascript

{
    "_type": "prompt",
    "input_variables": ["adjective", "content"],
    "template": "Tell me a {adjective} joke about {content}."
}

json里面的还可以换成文件路径:"template_path": "simple_template.txt"

在这里插入图片描述

在这里插入图片描述

代码语言:javascript

from langchain.prompts import load_prompt

prompt = load_prompt("simple_prompt.yaml")

# prompt = load_prompt("simple_prompt.json")

print(prompt.format(adjective="funny", content="fox"))
# Tell me a funny joke about fox.
  • 输出封装

Pydantic (JSON) Parser

自动根据Pydantic类的定义,生成输出的格式说明

代码语言:javascript

# pydantic  2.5.2
from pydantic import BaseModel, Field, ValidationInfo, field_validator
from typing import List, Dict

# 定义你的输出对象
class Date(BaseModel):
    year: int = Field(description="Year")
    month: int = Field(description="Month")
    day: int = Field(description="Day")
    era: str = Field(description="BC or AD")

    # ----- 可选机制 --------
    # 你可以添加自定义的校验机制
    @field_validator('month')
    def valid_month(cls, field, info):
        if field <= 0 or field > 12:
            raise ValueError("月份必须在1-12之间")
        return field
        
    @field_validator('day')
    def valid_day(cls, field, info):
        if field <= 0 or field > 31:
            raise ValueError("日期必须在1-31日之间")
        return field

    @field_validator('day', mode='before')
    def valid_date(cls, day, values):
        year = values.data['year']
        month = values.data['month']

        # 确保年份和月份都已经提供
        if year is None or month is None:
            return day  # 无法验证日期,因为没有年份和月份

        # 检查日期是否有效
        if month == 2:
            if cls.is_leap_year(year) and day > 29:
                raise ValueError("闰年2月最多有29天")
            elif not cls.is_leap_year(year) and day > 28:
                raise ValueError("非闰年2月最多有28天")
        elif month in [4, 6, 9, 11] and day > 30:
            raise ValueError(f"{month}月最多有30天")

        return day

    @staticmethod
    def is_leap_year(year):
        if year % 400 == 0 or (year % 4 == 0 and year % 100 != 0):
            return True
        return False
    
from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.chat_models import ChatOpenAI

from langchain.output_parsers import PydanticOutputParser


model_name = 'gpt-4'
temperature = 0
model = ChatOpenAI(model_name=model_name, temperature=temperature)

# 根据Pydantic对象的定义,构造一个OutputParser
parser = PydanticOutputParser(pydantic_object=Date)

template = """提取用户输入中的日期。
{format_instructions}
用户输入:
{query}"""

prompt = PromptTemplate(
    template=template,
    input_variables=["query"],
    # 直接从OutputParser中获取输出描述,并对模板的变量预先赋值
    partial_variables={"format_instructions": parser.get_format_instructions()} 
)

print("====Format Instruction=====")
print(parser.get_format_instructions())


query = "2023年四月6日天气晴..."
model_input = prompt.format_prompt(query=query)

print("====Prompt=====")
print(model_input.to_string())

output = model(model_input.to_messages())
print("====Output=====")
print(output)
print("====Parsed=====")
date = parser.parse(output.content)
print(date)

输出:

代码语言:javascript

====Format Instruction=====
The output should be formatted as a JSON instance that conforms to the JSON schema below.

As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}
the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.

Here is the output schema:

代码语言:javascript

{"properties": {"year": {"description": "Year", "title": "Year", "type": "integer"}, "month": {"description": "Month", "title": "Month", "type": "integer"}, "day": {"description": "Day", "title": "Day", "type": "integer"}, "era": {"description": "BC or AD", "title": "Era", "type": "string"}}, "required": ["year", "month", "day", "era"]}

代码语言:javascript

====Prompt=====
提取用户输入中的日期。
The output should be formatted as a JSON instance that conforms to the JSON schema below.

As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}
the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.

Here is the output schema:

代码语言:javascript

{"properties": {"year": {"description": "Year", "title": "Year", "type": "integer"}, "month": {"description": "Month", "title": "Month", "type": "integer"}, "day": {"description": "Day", "title": "Day", "type": "integer"}, "era": {"description": "BC or AD", "title": "Era", "type": "string"}}, "required": ["year", "month", "day", "era"]}

代码语言:javascript

用户输入:
2023年四月6日天气晴...
====Output=====
content='{"year": 2023, "month": 4, "day": 6, "era": "AD"}'
====Parsed=====
year=2023 month=4 day=6 era='AD'

Auto-Fixing Parser

使用LLM修复不符合格式的输出

代码语言:javascript

from langchain.output_parsers import OutputFixingParser

new_parser = OutputFixingParser.from_llm(parser=parser, llm=ChatOpenAI(model="gpt-4"))

#我们把之前output的格式改错
output = output.content.replace("4","四")
print("===格式错误的Output===")
print(output)
try:
    date = parser.parse(output)
except Exception as e:
    print("===出现异常===")
    print(e)
    
#用OutputFixingParser自动修复并解析
date = new_parser.parse(output)
print("===重新解析结果===")
print(date)

输出:

代码语言:javascript

===格式错误的Output===
{"year": 2023, "month": 四, "day": 6, "era": "AD"}
===出现异常===
Failed to parse Date from completion {"year": 2023, "month": 四, "day": 6, "era": "AD"}. Got: Expecting value: line 1 column 25 (char 24)
===重新解析结果===
year=2023 month=4 day=6 era='AD'
3. 数据连接封装

主要是封装了一些,文档加载、向量化、检索等

  • 目前版本的实现,比较粗糙,老师建议自己实现

文档加载

代码语言:javascript

# pip install pypdf

from langchain.document_loaders import PyPDFLoader

loader = PyPDFLoader("llama2.pdf")
pages = loader.load_and_split()

print(pages[0].page_content)

文档切分

代码语言:javascript

from langchain.text_splitter import RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=200,
    chunk_overlap=50,  # 思考:为什么要做overlap
    length_function=len,
    add_start_index=True,
)

paragraphs = text_splitter.create_documents([pages[0].page_content])
for para in paragraphs:
    print(para.page_content)
    print('-------')

内置 RAG

代码语言:javascript

# pip install chromadb
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
from langchain.document_loaders import PyPDFLoader

# 加载文档
loader = PyPDFLoader("llama2.pdf")
pages = loader.load_and_split()

# 文档切分
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=300, 
    chunk_overlap=100,
    length_function=len,
    add_start_index=True,
)

texts = text_splitter.create_documents([pages[2].page_content,pages[3].page_content])

# 灌库
embeddings = OpenAIEmbeddings()
db = Chroma.from_documents(texts, embeddings)

# LangChain内置的 RAG 实现
qa_chain = RetrievalQA.from_chain_type(
    llm=OpenAI(temperature=0), 
    retriever=db.as_retriever() 
)

query = "llama 2有多少参数?"
response = qa_chain.run(query)
print(response)  
#  Llama 2 has 7B, 13B, and 70B parameters.
4. 记忆封装

ConversationBufferMemory 长度无限制

代码语言:javascript

from langchain.memory import ConversationBufferMemory, ConversationBufferWindowMemory

history = ConversationBufferMemory()
history.save_context({"input": "你好啊"}, {"output": "你也好啊"})

print(history.load_memory_variables({}))

history.save_context({"input": "你再好啊"}, {"output": "你又好啊"})

print(history.load_memory_variables({}))

输出:

代码语言:javascript

{'history': 'Human: 你好啊\nAI: 你也好啊'}
{'history': 'Human: 你好啊\nAI: 你也好啊\nHuman: 你再好啊\nAI: 你又好啊'}

ConversationBufferWindowMemory 只保留最近 k 轮对话

代码语言:javascript

from langchain.memory import ConversationBufferWindowMemory

window = ConversationBufferWindowMemory(k=1)
window.save_context({"input": "第一轮问"}, {"output": "第一轮答"})
window.save_context({"input": "第二轮问"}, {"output": "第二轮答"})
window.save_context({"input": "第三轮问"}, {"output": "第三轮答"})
print(window.load_memory_variables({}))
#  {'history': 'Human: 第三轮问\nAI: 第三轮答'}

ConversationSummaryMemory 自动将对话历史,进行摘要

代码语言:javascript

from langchain.memory import ConversationSummaryMemory
from langchain.llms import OpenAI

memory = ConversationSummaryMemory(
    llm=OpenAI(temperature=0),
    buffer="The conversation is between a customer and a sales. 以中文进行摘要"
)
memory.save_context(
    {"input": "你好"}, {"output": "你好,我是你的AI助手。我能为你回答有关AGIClass的各种问题。"})

print(memory.load_memory_variables({}))
# {'history': '\n这段对话是客户和销售之间的对话,AI助手可以回答有关AGIClass的各种问题。'}

ConversationTokenBufferMemory 根据 Token 数限定 Memory 大小

VectorStoreRetrieverMemory 将 Memory 存储在向量数据库中,根据用户输入检索回最相关的部分

5. LangChain Expression Language

LCEL的一些亮点包括:

  1. 流支持
  2. 异步支持
  3. 优化的并行执行: 链条中可以并行的部分,自动并行执行(例如加载多个文档)
  4. 重试和回退:为 LCEL 链的任何部分配置重试和回退。更可靠。
  5. 访问中间结果:可以获取链条的中间结果,你可以流式传输中间结果,并且在每个LangServe服务器上都可用。
  6. 输入和输出模式:输入和输出模式为每个 LCEL 链提供了从链的结构推断出的 Pydantic 和 JSONSchema 模式。这可以用于输入和输出的验证,是 LangServe 的一个组成部分。
  7. 无缝LangSmith跟踪集成:随着链条变得越来越复杂,理解每一步发生了什么变得越来越重要。通过 LCEL,所有步骤都自动记录到 LangSmith,以实现最大的可观察性和可调试性。
  8. 无缝LangServe部署集成:任何使用 LCEL 创建的链都可以轻松地使用 LangServe 进行部署。

代码语言:javascript

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.schema import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
from pydantic import BaseModel, Field 
from typing import List, Dict, Optional
from enum import Enum

# 输出结构
class SortEnum(str, Enum):
    data = 'data'
    price = 'price'

class OrderingEnum(str, Enum):
    ascend = 'ascend'
    descend = 'descend'

class Semantics(BaseModel):
    name: Optional[str] = Field(description="流量包名称",default=None)
    price_lower: Optional[int] = Field(description="价格下限",default=None)
    price_upper: Optional[int] = Field(description="价格上限",default=None)
    data_lower: Optional[int] = Field(description="流量下限",default=None)
    data_upper: Optional[int] = Field(description="流量上限",default=None)
    sort_by: Optional[SortEnum] = Field(description="按价格或流量排序",default=None)
    ordering: Optional[OrderingEnum] = Field(description="升序或降序排列",default=None)

# OutputParser
parser = PydanticOutputParser(pydantic_object=Semantics)

# Prompt 模板
prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "将用户的输入解析成JSON表示。输出格式如下:\n{format_instructions}\n不要输出未提及的字段。",
        ),
        ("human", "{query}"),
    ]
).partial(format_instructions=parser.get_format_instructions())

# 模型
model = ChatOpenAI(temperature=0)

# LCEL 表达式
runnable = (
    {"query": RunnablePassthrough()} | prompt | model | parser
)

# 运行
print(runnable.invoke("不超过100元的流量至少10GB的最大流量套餐有哪些"))

# name=None price_lower=None price_upper=100 data_lower=10 data_upper=None sort_by=None ordering=None

代码语言:javascript

from langchain.embeddings import OpenAIEmbeddings
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
from langchain.vectorstores import Chroma

# 向量数据库
vectorstore = Chroma.from_texts(
    [
        "Sam Altman是OpenAI的CEO,openai 一点也不 open", 
        "Sam Altman被解雇了",
        "Sam Altman被复职了"
    ], embedding=OpenAIEmbeddings()
)

# 检索接口
retriever = vectorstore.as_retriever()

# Prompt模板
template = """Answer the question based only on the following context:
{context}

Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)

# Chain
retrieval_chain = (
    {"question": RunnablePassthrough(),"context": retriever}
    | prompt
    | model
    | StrOutputParser()
)

retrieval_chain.invoke("OpenAI的CEO是谁")
# 'Based on the given context, the CEO of OpenAI is Sam Altman.'

参考:https://python.langchain.com/docs/expression_language/how_to/

  • 配置运行时变量:configure
  • 故障回退:fallbacks
  • 并行调用:map
  • 逻辑分支:routing
  • 调用自定义流式函数:generators
  • 链接外部Memory:message_history

更多例子:https://python.langchain.com/docs/expression_language/cookbook/

6. Agent 智能体

将LLM作为推理引擎。给定一个任务,智能体自动生成完成任务所需的步骤,执行相应动作(例如选择并调用工具),直到任务完成

  • 定义一些工具,可以是一个函数、三方 APIChain 或者 Agentrun() 作为一个 Tool

代码语言:javascript

# 申请搜索的api  https://serpapi.com/
# pip install google-search-results

搜索工具

代码语言:javascript

from langchain import SerpAPIWrapper
from langchain.tools import Tool, tool

search = SerpAPIWrapper()
tools = [
    Tool.from_function(
        func=search.run,
        name="Search",
        description="useful for when you need to answer questions about current events"
    ),
]

自定义工具

代码语言:javascript

import calendar
import dateutil.parser as parser
from datetime import date

# 自定义工具
@tool("weekday")
def weekday(date_str: str) -> str:
    """Convert date to weekday name"""
    d = parser.parse(date_str)
    return calendar.day_name[d.weekday()]

tools += [weekday]
6.1 智能体类型:ReAct

在这里插入图片描述

在这里插入图片描述

由于用到了 GG 搜索,需要 魔法连接

代码语言:javascript

from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.agents import AgentType
from langchain.agents import initialize_agent

llm = ChatOpenAI(model_name='gpt-4', temperature=0)

agent = initialize_agent(
    tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("张学友生日那天是星期几")

输出:

代码语言:javascript

> Entering new AgentExecutor chain...
我需要找出张学友的生日,然后使用weekday函数来确定那天是星期几。
Action: Search
Action Input: 张学友的生日

Observation: July 10, 1961
Thought:我现在知道张学友的生日是1961年7月10日。我可以使用weekday函数来确定这一天是星期几。
Action: weekday
Action Input: 1961-07-10


Observation: Monday
Thought:我现在知道张学友的生日那天是星期一。
Final Answer: 张学友的生日那天是星期一。

> Finished chain.

上网确认了下,生日没错

6.2 智能体类型:SelfAskWithSearch

代码语言:javascript

from langchain import OpenAI, SerpAPIWrapper
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType

llm = OpenAI(temperature=0)
search = SerpAPIWrapper()
tools = [
    Tool(
        name="Intermediate Answer",
        func=search.run,
        description="useful for when you need to ask with search.",
    )
]

self_ask_with_search = initialize_agent(
    tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, 
    verbose=True, handle_parsing_errors=True
)
self_ask_with_search.run(
    "中国的K12逻辑思维教育公司有哪些比较有名的?请列举出前三个"
)

输出:

代码语言:javascript

> Entering new AgentExecutor chain...
Could not parse output:  Yes.
Follow up: 中国的K12逻辑思维教育公司有多少家?

Intermediate answer: Invalid or incomplete response
Could not parse output: .
Follow up: 中国有哪些著名的K12逻辑思维教育公司?


Intermediate answer: Invalid or incomplete response
Could not parse output: 
Could not parse output: .
Follow up: 请列举出前三个著名的K12逻辑思维教育公司?


Intermediate answer: Invalid or incomplete response
Could not parse output: 
Could not parse output: 
Follow up: 中国有哪些著名的K12逻辑思维教育公司?


Intermediate answer: Invalid or incomplete response
Could not parse output: 
Could not parse output: 
Could not parse output: 
Follow up: 请列举出前三个著名的K12逻辑思维教育公司?


Intermediate answer: Invalid or incomplete response
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Follow up: 中国有哪些著名的K12逻辑思维教育公司?


Intermediate answer: Invalid or incomplete response
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Follow up: 请列举出前三个著名的K12逻辑思维教育公司?


Intermediate answer: Invalid or incomplete response
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Follow up: 前三个著名的K12逻辑思维教育公司是什么?


Intermediate answer: Invalid or incomplete response
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
So the final answer is: 
The top three K12 logic thinking education companies in China are: 1. New Oriental Education & Technology Group; 2. TAL Education Group; 3. China Maple Leaf Educational Systems.
Intermediate answer: Invalid or incomplete response
Could not parse output: 
Intermediate answer: Invalid or incomplete response
Could not parse output: 
Intermediate answer: Invalid or incomplete response
Could not parse output: 
Could not parse output: 

Intermediate answer: Invalid or incomplete response

Could not parse output: 
Could not parse output: 
Could not parse output: 
Could not parse output: 
So the final answer is: The top three K12 logic thinking education companies in China are: 1. New Oriental Education & Technology Group; 2. TAL Education Group; 3. China Maple Leaf Educational Systems.

> Finished chain.

代码语言:javascript

'The top three K12 logic thinking education companies in China are: 
1. New Oriental Education & Technology Group; 
2. TAL Education Group; 
3. China Maple Leaf Educational Systems.'

回答的结果是:新东方、好未来、枫叶教育

再问一个:"中国出名的武侠小说作家?请列举出最有名的前三个"

代码语言:javascript

> Entering new AgentExecutor chain...
Could not parse output:  Yes.
Follow up: Who is the most famous Chinese wuxia novelist?

Intermediate answer: Invalid or incomplete response
Could not parse output: .
Follow up: Who are the top three most famous Chinese wuxia novelists?

Intermediate answer: Invalid or incomplete response

Could not parse output: The top three most famous Chinese wuxia novelists are Jin Yong, Gu Long, and Liang Yusheng.
So the final answer is: Jin Yong, Gu Long, and Liang Yusheng

> Finished chain.

代码语言:javascript

'Jin Yong, Gu Long, and Liang Yusheng'
(金庸、古龙、梁羽生)
6.3. OpenAI Assistants

代码语言:javascript

from langchain.agents.openai_assistant import OpenAIAssistantRunnable

interpreter_assistant = OpenAIAssistantRunnable.create_assistant(
    name="langchain assistant",
    instructions="You are a personal math tutor. Write and run code to answer math questions.",
    tools=[{"type": "code_interpreter"}],
    model="gpt-4-1106-preview",
)
output = interpreter_assistant.invoke({"content": "10减4.5的差的2.8次方是多少"})

print(output[0].content[0].text.value)

这个case没有跑出结果,一直在运行状态

ReAct 是比较常用的 Planner SelfAskWithSearch 更适合需要层层推理的场景(例如知识图谱) OpenAI Assistants 不是万能

7. LangServe

LangServe 用于将 Chain 或者 Runnable 部署成一个 REST API 服务

代码语言:javascript

# 安装 LangServe
# pip install "langserve[all]"

# 也可以只安装一端
# pip install "langserve[client]"
# pip install "langserve[server]"

服务端

代码语言:javascript

from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv('../utils/.env'))
from fastapi import FastAPI
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI
from langserve import add_routes
import uvicorn

app = FastAPI(
  title="LangChain Server",
  version="1.0",
  description="A simple api server using Langchain's Runnable interfaces",
)

model = ChatOpenAI()
prompt = ChatPromptTemplate.from_template("讲一个关于{topic}的笑话")
add_routes(
    app,
    prompt | model,
    path="/joke",
)

if __name__ == "__main__":
    uvicorn.run(app, host="localhost", port=8080)

客户端

代码语言:javascript

from langserve import RemoteRunnable

joke_chain = RemoteRunnable("http://localhost:8080/joke/")

joke_chain.invoke({"topic": "小明"})

输出

代码语言:javascript

AIMessage(content='小明上课老师问:小明,你的作业为什么没有写完?\n小明说:老师,我家的狗吃了我的作业。\n老师很生气地说:小明,这个借口已经听过很多次了!\n小明立刻回答:老师,真的是这样的!我的狗吃完了作业,我还特意把作业从狗的肚子里拿出来给你看呢!\n老师顿时无言以对,全班都笑翻了。')

在这里插入图片描述

在这里插入图片描述

LC 和 SK 对比

功能/工具LangChainSemantic Kernel
版本号0.0.341python-0.3.15.dev
适配的 LLM少 + 外部生态
Prompt 工具支持支持
Prompt 函数嵌套需要通过 LCEL支持
Prompt 模板嵌套不支持不支持
输出解析工具支持不支持
上下文管理工具支持C#版支持,Python版尚未支持
内置工具多,但良莠不齐少 + 外部生态
三方向量数据库适配少 + 外部生态
服务部署LangServe与 Azure 衔接更丝滑
管理工具LangSmith/LangFusePrompt Flow

如何系统的去学习AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

  • 27
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
AI模型全栈工程师是指在人工智能模型领域具有全面技术能力的工程师。他们不仅能够熟练掌握深度学习、机器学习等人工智能领域的核心算法和模型架构,还能够进行端到端的开发和实现,具备完整的技术堆栈知识。 首先,AI模型全栈工程师需要精通深度学习和机器学习的算法原理,包括神经网络、卷积神经网络、循环神经网络等各种模型结构和优化方法。他们需要能够灵活运用这些算法,解决各种复杂的人工智能问题。 其次,AI模型全栈工程师需要熟练掌握各种开发工具和框架,例如TensorFlow、PyTorch、Keras等,能够在这些框架下进行模型的实现和训练。 此外,AI模型全栈工程师还需要具备数据处理和分析的能力,能够处理海量的数据,并能够进行数据挖掘和特征工程,为模型训练提供高质量的数据。 最后,AI模型全栈工程师需要具备工程实现和部署的能力,能够将训练好的模型应用于实际的场景中,包括模型的优化和性能调优,以及模型的部署和服务化。 总之,AI模型全栈工程师需要具备全面的人工智能技术能力,涵盖算法原理、开发工具、数据处理和工程实现等方面,能够独立完成从建模到部署的全流程工作。这样的工程师在人工智能技术领域具有很高的竞争力,能够为企业和团队带来更多的价值和发展机会。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值