LLM权威教程:吴恩达 面向开发者的LLM入门教程+开源大模型食用指南,普通学习者也能看懂!

今天给大家推荐一本由吴恩达OpenAI团队共同编写的关于大型语言模型(LLM)的权威教程<面向开发者的LLM入门教程>!在Github上已经高达50k star了,这含金量不用多说,在这里给大家强烈推荐一波,不多bb直接开始介绍!

这本教程旨在为开发者提供全面而系统的LLM知识和技能,结合了吴恩达在机器学习和人工智能领域的深厚造诣以及OpenAI在LLM技术方面的领先经验。

教程内容主要分为四大部分:LLM基础、LLM技术、LLM应用和实践。

在LLM基础部分,读者可以学习到LLM的基本概念、发展历程和技术挑战。而LLM技术部分详细介绍了GPT系列、Codex等OpenAI开发的LLM模型的原理、实现和优化。

LLM应用部分讨论了LLM在自然语言处理、代码生成、文本编辑、机器翻译等任务中的应用,实践部分则介绍了LLM在实际项目中的开发和部署。这些都是学习大模型必备的技能。

PDF书籍: 完整版本链接获取

👉[CSDN大礼包🎁:<面向开发者的LLM入门教程> PDF 免费分享 点击免费获取)]👈

😝有需要的小伙伴,可以V扫描下方二维码领取==🆓

书籍目录如下:

  • 前言

  • 环境配置

    第一部分 面向开发者的提示工程
  • 第一章 简介

  • 第二章 提示原则

  • 第三章 迭代优化

  • 第四章 文本概括

  • 第五章 推断

  • 第六章 文本转换

  • 第七章 文本扩展

  • 第八章 聊天机器人

  • 第九章 总结

    第二部分 搭建基于 ChatGPT 的问答系统
  • 第一章 简介

  • 第二章 语言模型,提问范式与 Token

  • 第三章 评估输入——分类

  • 第四章 检查输入 - 审核

  • 第五章 处理输入-思维链推理

  • 第六章 处理输入-链式

  • 第七章 检查结果

  • 第八章 搭建一个带评估的端到端问答系统

  • 第九章 评估(上)——存在一个简单的正确答案

  • 第十章 评估(下)——不存在简单的正确答案

  • 第十一章 总结

    第三部分 使用 LangChain 开发应用程序
  • 第一章 简介

  • 第二章 模型,提示和输出解释器

  • 第三章 储存

  • 第四章 模型链

  • 第五章 基于文档的问答

  • 第六章 评估

  • 第七章 代理

  • 第八章 总结

    第四部分 使用 LangChain 访问个人数据
  • 第一章 简介

  • 第二章 文档加载

  • 第三章 文档分割

  • 第四章 向量数据库与词向量(Vectorstores and Embeddings)

  • 第五章 检索(Retrieval)

  • 第六章 问答

  • 第七章、聊天 Chat

  • 第八章、总结

PDF一览:

image.png

image.png

image.png

智谱 AI 发布了最新开源模型 GLM4,通过 10T 高质量多语言数据与更先进的训练技术,达到了更加出色的生成效果。

在仅有 9B 参数的前提下,在中文能力、长文本能力以及工具调用等任务中达到了更加出色的效果。

教程介绍

秉承开源贡献的宗旨,Datawhale团队成员在模型发布 12 小时 之内,为 编写了GLM-4整套教学流程,包括:

  1. 模型 api 部署;
  2. Langchain 接入;
  3. WebDemo 部署;
  4. vLLM 部署;
  5. LoRA 高效指令微调。

教程除提供过程代码外,还贴心为学习者提供了训练数据Autodl 环境镜像,方便学习者一键运行!!

项目已打包!文末获取~

目前项目已被智谱官方推荐学习:

项目介绍

《开源大模型食用指南》是一个围绕开源大模型、针对国内初学者、基于 AutoDL 平台的中国宝宝专属大模型教程,针对各类开源大模型提供包括环境配置本地部署高效微调等技能在内的全流程指导,简化开源大模型的部署、使用和应用流程,让更多的普通学生、研究者更好地使用开源大模型,帮助开源、自由的大模型更快融入到普通学习者的生活中。

除 GLM4 外,项目已支持 LLama3, InternLM, Qwen1.5 等 20 项开源模型全流程教程,并且,本项目代码全部开源!!一并配置示例训练数据,AutoDL 环境镜像等,方便学习者使用!

目前项目已经收获 4930 star~ 屡次登上 Github Trending

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值