今天给大家推荐一本由吴恩达
和OpenAI团队
共同编写的关于大型语言模型(LLM)的权威教程<面向开发者的LLM入门教程
>!在Github上已经高达50k star了
,这含金量不用多说,在这里给大家强烈推荐一波,不多bb直接开始介绍!
这本教程旨在为开发者提供全面而系统的LLM知识和技能,结合了吴恩达在机器学习和人工智能领域的深厚造诣以及OpenAI在LLM技术方面的领先经验。
教程内容主要分为四大部分:LLM基础、LLM技术、LLM应用和实践。
在LLM基础部分,读者可以学习到LLM的基本概念、发展历程和技术挑战。而LLM技术部分详细介绍了GPT系列、Codex等OpenAI开发的LLM模型的原理、实现和优化。
LLM应用部分讨论了LLM在自然语言处理、代码生成、文本编辑、机器翻译等任务中的应用,实践部分则介绍了LLM在实际项目中的开发和部署。这些都是学习大模型必备的技能。
PDF书籍: 完整版本链接获取
👉[CSDN大礼包🎁:<
面向开发者的LLM入门教程
> PDF 免费分享 点击免费获取)]👈
😝有需要的小伙伴,可以V扫描下方二维码领取==🆓
书籍目录如下:
-
前言
-
环境配置
第一部分 面向开发者的提示工程
-
第一章 简介
-
第二章 提示原则
-
第三章 迭代优化
-
第四章 文本概括
-
第五章 推断
-
第六章 文本转换
-
第七章 文本扩展
-
第八章 聊天机器人
-
第九章 总结
第二部分 搭建基于 ChatGPT 的问答系统
-
第一章 简介
-
第二章 语言模型,提问范式与 Token
-
第三章 评估输入——分类
-
第四章 检查输入 - 审核
-
第五章 处理输入-思维链推理
-
第六章 处理输入-链式
-
第七章 检查结果
-
第八章 搭建一个带评估的端到端问答系统
-
第九章 评估(上)——存在一个简单的正确答案
-
第十章 评估(下)——不存在简单的正确答案
-
第十一章 总结
第三部分 使用 LangChain 开发应用程序
-
第一章 简介
-
第二章 模型,提示和输出解释器
-
第三章 储存
-
第四章 模型链
-
第五章 基于文档的问答
-
第六章 评估
-
第七章 代理
-
第八章 总结
第四部分 使用 LangChain 访问个人数据
-
第一章 简介
-
第二章 文档加载
-
第三章 文档分割
-
第四章 向量数据库与词向量(Vectorstores and Embeddings)
-
第五章 检索(Retrieval)
-
第六章 问答
-
第七章、聊天 Chat
-
第八章、总结
PDF一览:
智谱 AI 发布了最新开源模型 GLM4,通过 10T 高质量多语言数据与更先进的训练技术,达到了更加出色的生成效果。
在仅有 9B 参数的前提下,在中文能力、长文本能力以及工具调用等任务中达到了更加出色的效果。
教程介绍
秉承开源贡献的宗旨,Datawhale团队成员在模型发布 12 小时 之内,为 编写了GLM-4整套教学流程,包括:
- 模型 api 部署;
- Langchain 接入;
- WebDemo 部署;
- vLLM 部署;
- LoRA 高效指令微调。
教程除提供过程代码外,还贴心为学习者提供了训练数据与 Autodl 环境镜像,方便学习者一键运行!!
项目已打包!文末获取~
目前项目已被智谱官方推荐学习:
项目介绍
《开源大模型食用指南》是一个围绕开源大模型、针对国内初学者、基于 AutoDL 平台的中国宝宝专属大模型教程,针对各类开源大模型提供包括环境配置、本地部署、高效微调等技能在内的全流程指导,简化开源大模型的部署、使用和应用流程,让更多的普通学生、研究者更好地使用开源大模型,帮助开源、自由的大模型更快融入到普通学习者的生活中。
除 GLM4 外,项目已支持 LLama3, InternLM, Qwen1.5 等 20 项开源模型全流程教程,并且,本项目代码全部开源!!一并配置示例训练数据,AutoDL 环境镜像等,方便学习者使用!
目前项目已经收获 4930 star~ 屡次登上 Github Trending 榜
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓