检索增强生成(RAG)技术概述
检索增强生成(Retrieval-Augmented Generation,简称 RAG)是一种旨在提升大型语言模型(Large Language Models,LLMs)性能的技术方法。其核心思想是通过整合外部可靠知识库的信息来增强模型的输出质量。
RAG 的工作原理可以概括如下:当 LLM 接收到查询时,它不仅依赖于自身的预训练知识,还会主动从指定的知识源检索相关信息。这种方法确保了生成的输出能够参考大量上下文丰富的数据,并得到最新、最相关可用信息的支持。
RAG 系统的核心组件
标准 RAG 系统主要由三个关键组件构成:
- 检索器组件(Retriever Component):
-
功能:在知识库或大规模文档集中搜索与查询主题高度相关的信息。
-
工作方式:识别在语义上与查询相关的文档,并通过相似度度量(通常采用向量间的余弦相似度)计算相关性。
- 生成器(Generator):
-
定义:通常是一个大型语言模型。
-
输入:检索到的相关信息和原始查询。
-
输出:基于输入生成响应。
- 知识库(Knowledge Base):
- 用途:作为检索器查找文档或信息的数据源。
RAG 的工作流程
-
从外部源收集相关信息。
-
将收集到的信息附加到用户的原始提示中。
-
将增强后的提示作为输入发送给语言模型。
-
在生成阶段,LLM 结合增强提示和自身的训练数据表示,生成针对用户查询定制的响应。
这一过程产生的响应融合了个性化和可验证的信息,特别适用于聊天机器人等应用场景。
图2:检索增强生成流程示意
构建 RAG 系统的关键步骤
- 知识库准备:
-
对文档进行索引
-
创建文本嵌入
- 检索器模型:
- 训练或微调,以有效搜索知识库
- 生成器模型:
- 通常采用预训练的语言模型
- 系统集成:
- 确保各组件无缝协作
Graph RAG 技术简介
Graph RAG 是 RAG 方法的一个高级变体,其特点是引入了图结构数据。与将知识库视为平面文档集合不同,Graph RAG 将信息表示为实体和关系的互联网络。
Graph RAG 的核心概念
Graph RAG 基于知识图谱(Knowledge Graphs,KGs)构建。知识图谱是现实世界实体及其关系的结构化表示,主要由两个基本元素组成:
-
**节点(Nodes):**表示单个实体,如人物、地点、物体或概念。
-
**边(Edges):**表示节点之间的关系,定义了实体间的连接方式。
相比于标准 RAG 使用向量相似度和向量数据库进行检索,Graph RAG 利用知识库进行更全面、系统的信息检索,从而提高了检索的完整性和准确性。
Graph RAG 的技术优势
Graph RAG 相较于标准 RAG 具有以下显著优势:
-
关系上下文捕捉:
能够捕捉和利用信息片段之间的复杂关系,提供更丰富、更具语境的信息检索结果。
-
多跳推理能力:
图结构支持系统沿关系链进行推理,实现更复杂、更深入的逻辑分析。
-
结构化知识表示:
相比平面文档结构,图结构能更自然地表示层级和非层级关系,更贴近现实世界的知识组织方式。
-
查询效率提升:
对于涉及关系遍历的查询类型,图结构可显著提高处理效率。
图3:知识图谱示例
Graph RAG 的工作原理
Graph RAG 的工作流程可以概括为以下几个关键步骤:
-
查询处理:
对输入查询进行分析和转换,使其适合图结构的查询格式。
-
图遍历:
系统在图结构中进行探索,沿相关关系路径寻找连接的信息节点。
-
子图检索:
不同于检索独立的信息片段,系统提取包含相互关联上下文的相关子图。
-
信息整合:
将检索到的子图进行组合和处理,形成一个连贯、全面的上下文信息集。
-
响应生成:
语言模型基于原始查询和整合后的图信息生成最终响应。
Graph RAG 处理流程图
图4:Graph RAG 处理流程示意图
标准 RAG 与 Graph RAG 的关键区别
- 知识表示方式:
-
标准 RAG:采用平面文档结构
-
Graph RAG:使用图结构表示知识
- 检索机制:
-
标准 RAG:主要依赖向量相似度搜索
-
Graph RAG:采用图遍历算法进行信息检索
- 上下文理解能力:
- Graph RAG 能够捕捉更复杂的多步骤关系,这些关系在标准 RAG 中可能被忽略
- 推理能力:
- Graph RAG 的图结构支持对相互关联信息进行更深入、更复杂的推理
图5:RAG 与 Graph RAG 对比示意
总结
Graph RAG 技术通过引入图结构化的知识表示和处理方法,显著增强了传统 RAG 系统的能力。它不仅提高了信息检索的准确性和完整性,还为复杂查询和多步推理提供了更强大的支持。这种方法在处理需要深度上下文理解和复杂关系分析的任务中,展现出了明显的优势。
随着知识图谱技术和图数据库的不断发展,Graph RAG 有望在各种高级人工智能应用中发挥越来越重要的作用,特别是在需要精确、全面信息检索和复杂推理的领域。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓