全网最全Qwen7b微调保姆级教程,微调打造企业私有化大模型(文末福利)

前方干货预警:这可能是你能够找到的,最容易理解,最容易跑通的适用于各种开源LLM模型的同时支持多轮和单轮对话数据集的大模型高效微调范例。

我们构造了一个修改大模型自我认知的3轮对话的玩具数据集,使用QLoRA算法,只需要5分钟的训练时间,就可以完成微调,并成功修改了LLM模型的自我认知(以Qwen7b-Chat为例)。

公众号算法美食屋后台回复关键词:torchkeras,可获取本文notebook源码~

通过借鉴FastChat对各种开源LLM模型进行数据预处理方法统一管理的方法,因此本范例适用于非常多不同的开源LLM模型,包括 Qwen-7b-Chat,Llama-13b-chat, BaiChuan2-13b-chat, Intern-7b-chat, ChatGLM2-6b-chat 以及其它许许多多FastChat支持的模型。

在多轮对话模式下,我们按照如下格式构造包括多轮对话中所有机器人回复内容的标签。

(注:llm.build_inputs_labels(messages,multi_rounds=True) 时采用)

代码语言:javascript


inputs = <user1> <assistant1> <user2> <assistant2> <user3> <assistant3>
labels = <-100> <assistant1> <-100> <assistant2> <-100> <assistant3>

在单轮对话模式下,我们仅将最后一轮机器人的回复作为要学习的标签。

(注:llm.build_inputs_labels(messages,multi_rounds=False)时采用)

代码语言:javascript

inputs = <user1> <assistant1> <user2> <assistant2> <user3> <assistant3>
labels = <-100> <-100> <-100> <-100> <-100> <assistant3>

〇,预训练模型

代码语言:javascript

import warnings
warnings.filterwarnings('ignore')

代码语言:javascript

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM,AutoConfig, AutoModel, BitsAndBytesConfig
from transformers.generation.utils import GenerationConfig
import torch.nn as nn


#使用QLoRA引入的 NF4量化数据类型以节约显存
model_name_or_path ='qwen_7b'  #远程:'Qwen/Qwen-7b-Chat'

bnb_config=BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            llm_int8_threshold=6.0,
            llm_int8_has_fp16_weight=False,
        )

tokenizer = AutoTokenizer.from_pretrained(
   model_name_or_path, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                quantization_config=bnb_config,
                trust_remote_code=True) 

model.generation_config = GenerationConfig.from_pretrained(model_name_or_path)

微调前输出如下:

一,准备数据

下面我设计了一个改变LLM自我认知的玩具数据集,这个数据集有三轮对话。

第一轮问题是 who are you?

第二轮问题是 where are you from?

第三轮问题是 what can you do?

差不多是哲学三问吧:你是谁?你从哪里来?你要到哪里去?

通过这三个问题,我们希望初步地改变 大模型的自我认知。

在提问的方式上,我们稍微作了一些数据增强。

所以,总共是有 27个样本。

1,导入样本

代码语言:javascript

who_are_you = ['请介绍一下你自己。','你是谁呀?','你是?',]
i_am = ['我叫梦中情炉,是一个三好炼丹炉:好看,好用,好改。我的英文名字叫做torchkeras,是一个pytorch模型训练模版工具。']
where_you_from = ['你多大了?','你是谁开发的呀?','你从哪里来呀']
i_from = ['我在2020年诞生于github星球,是一个有毅力的吃货设计和开发的。']
what_you_can = ['你能干什么','你有什么作用呀?','你能帮助我干什么']
i_can = ['我能够帮助你以最优雅的方式训练各种类型的pytorch模型,并且训练过程中会自动展示一个非常美丽的训练过程图表。']

conversation = [(who_are_you,i_am),(where_you_from,i_from),(what_you_can,i_can)]
print(conversation)

代码语言:javascript

import random
def get_messages(conversation):
    select = random.choice
    messages,history = [],[]
    for t in conversation:
        history.append((select(t[0]),select(t[-1])))
        
    for prompt,response in history:
        pair = [{"role": "user", "content": prompt},
            {"role": "assistant", "content": response}]
        messages.extend(pair)
    return messages 

2,做数据集

代码语言:javascript

from torch.utils.data import Dataset,DataLoader 
from copy import deepcopy
class MyDataset(Dataset):
    def __init__(self,conv,size=8
                ):
        self.conv = conv
        self.index_list = list(range(size))
        self.size = size 
        
    def __len__(self):
        return self.size
        
    def get(self,index):
        idx = self.index_list[index]
        messages = get_messages(self.conv)
        return messages

    
    def __getitem__(self,index):
        messages = self.get(index)
        input_ids, labels = llm.build_inputs_labels(messages,multi_rounds=True) #支持多轮
        return {'input_ids':input_ids,'labels':labels}
    

代码语言:javascript

ds_train = ds_val = MyDataset(conversation)
3,创建管道

代码语言:javascript

#如果pad_token_id为None,需要使用unk_token_id或eos_token_id代替
if tokenizer.pad_token_id is None:
    tokenizer.pad_token_id = tokenizer.unk_token_id if tokenizer.unk_token_id is not None else tokenizer.eos_token_id
    

def data_collator(examples: list):
    
    len_ids = [len(example["input_ids"]) for example in examples]
    longest = max(len_ids) #之后按照batch中最长的input_ids进行padding
    
    input_ids = []
    labels_list = []
    
    for length, example in sorted(zip(len_ids, examples), key=lambda x: -x[0]):
        ids = example["input_ids"]
        labs = example["labels"]
        
        ids = ids + [tokenizer.pad_token_id] * (longest - length)
        labs = labs + [-100] * (longest - length)
        
        input_ids.append(torch.LongTensor(ids))
        labels_list.append(torch.LongTensor(labs))
          
    input_ids = torch.stack(input_ids)
    labels = torch.stack(labels_list)
    return {
        "input_ids": input_ids,
        "labels": labels,
    }

代码语言:javascript

import torch 
dl_train = torch.utils.data.DataLoader(ds_train,batch_size=2,
                                       pin_memory=True,shuffle=False,
                                       collate_fn = data_collator)

dl_val = torch.utils.data.DataLoader(ds_val,batch_size=2,
                                    pin_memory=True,shuffle=False,
                                     collate_fn = data_collator)

二,定义模型

下面我们将使用QLoRA(实际上用的是量化的AdaLoRA)算法来微调Baichuan-13b模型。

代码语言:javascript

from peft import get_peft_config, get_peft_model, TaskType
model.supports_gradient_checkpointing = True  #
model.gradient_checkpointing_enable()
model.enable_input_require_grads()

model.config.use_cache = False  # silence the warnings. Please re-enable for inference!

代码语言:javascript

import bitsandbytes as bnb 
def find_all_linear_names(model):
    """
    找出所有全连接层,为所有全连接添加adapter
    """
    cls = bnb.nn.Linear4bit
    lora_module_names = set()
    for name, module in model.named_modules():
        if isinstance(module, cls):
            names = name.split('.')
            lora_module_names.add(names[0] if len(names) == 1 else names[-1])

    if 'lm_head' in lora_module_names:  # needed for 16-bit
        lora_module_names.remove('lm_head')
    return list(lora_module_names)

代码语言:javascript

from peft import prepare_model_for_kbit_training 
model = prepare_model_for_kbit_training(model)

代码语言:javascript

lora_modules = find_all_linear_names(model)
print(lora_modules) 

代码语言:javascript

from peft import AdaLoraConfig
peft_config = AdaLoraConfig(
    task_type=TaskType.CAUSAL_LM, inference_mode=False,
    r=16,
    lora_alpha=16, lora_dropout=0.08,
    target_modules= lora_modules
)

peft_model = get_peft_model(model, peft_config)

peft_model.is_parallelizable = True
peft_model.model_parallel = True
peft_model.print_trainable_parameters()

trainable params: 26,838,912 || all params: 7,748,163,616 || trainable%: 0.34639062015388394

三,训练模型

代码语言:javascript

from torchkeras import KerasModel 
from accelerate import Accelerator 

class StepRunner:
    def __init__(self, net, loss_fn, accelerator=None, stage = "train", metrics_dict = None, 
                 optimizer = None, lr_scheduler = None
                 ):
        self.net,self.loss_fn,self.metrics_dict,self.stage = net,loss_fn,metrics_dict,stage
        self.optimizer,self.lr_scheduler = optimizer,lr_scheduler
        self.accelerator = accelerator if accelerator is not None else Accelerator() 
        if self.stage=='train':
            self.net.train() 
        else:
            self.net.eval()
    
    def __call__(self, batch):
        
        #loss
        with self.accelerator.autocast():
            loss = self.net.forward(**batch)[0]

        #backward()
        if self.optimizer is not None and self.stage=="train":
            self.accelerator.backward(loss)
            if self.accelerator.sync_gradients:
                self.accelerator.clip_grad_norm_(self.net.parameters(), 1.0)
            self.optimizer.step()
            if self.lr_scheduler is not None:
                self.lr_scheduler.step()
            self.optimizer.zero_grad()
            
        all_loss = self.accelerator.gather(loss).sum()
        
        #losses (or plain metrics that can be averaged)
        step_losses = {self.stage+"_loss":all_loss.item()}
        
        #metrics (stateful metrics)
        step_metrics = {}
        
        if self.stage=="train":
            if self.optimizer is not None:
                step_metrics['lr'] = self.optimizer.state_dict()['param_groups'][0]['lr']
            else:
                step_metrics['lr'] = 0.0
        return step_losses,step_metrics
    
KerasModel.StepRunner = StepRunner 

#仅仅保存QLora可训练参数
def save_ckpt(self, ckpt_path='checkpoint', accelerator = None):
    unwrap_net = accelerator.unwrap_model(self.net)
    unwrap_net.save_pretrained(ckpt_path)
    
def load_ckpt(self, ckpt_path='checkpoint'):
    import os
    self.net.load_state_dict(
        torch.load(os.path.join(ckpt_path,'adapter_model.bin')),strict =False)
    self.from_scratch = False
    
KerasModel.save_ckpt = save_ckpt 
KerasModel.load_ckpt = load_ckpt 

代码语言:javascript

optimizer = bnb.optim.adamw.AdamW(peft_model.parameters(),
                                  lr=6e-03,is_paged=True)  #'paged_adamw'
keras_model = KerasModel(peft_model,loss_fn =None,
        optimizer=optimizer) 

ckpt_path = 'qwen7b_multirounds'

代码语言:javascript

keras_model.fit(train_data = dl_train,
                val_data = dl_val,
                epochs=100,patience=15,
                monitor='val_loss',mode='min',
                ckpt_path = ckpt_path
               )

四,保存模型

为减少GPU压力,此处可重启kernel释放显存

代码语言:javascript

import warnings 
warnings.filterwarnings('ignore')

代码语言:javascript

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM,AutoConfig, AutoModel, BitsAndBytesConfig
from transformers.generation.utils import GenerationConfig
import torch.nn as nn
#使用QLoRA引入的 NF4量化数据类型以节约显存
model_name_or_path ='qwen_7b'
ckpt_path = 'qwen7b_multirounds'



tokenizer = AutoTokenizer.from_pretrained(
   model_name_or_path, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                trust_remote_code=True) 

model.generation_config = GenerationConfig.from_pretrained(model_name_or_path)

代码语言:javascript

from peft import PeftModel

#可能需要5分钟左右
peft_model = PeftModel.from_pretrained(model, ckpt_path)
model_new = peft_model.merge_and_unload()

代码语言:javascript

from transformers.generation.utils import GenerationConfig
model_new.generation_config = GenerationConfig.from_pretrained(model_name_or_path)

代码语言:javascript

save_path = 'qwen_torchkeras'

代码语言:javascript

tokenizer.save_pretrained(save_path)
model_new.save_pretrained(save_path)

代码语言:javascript

!cp qwen_7b/*.py  qwen_torchkeras/

五,使用模型

为减少GPU压力,此处可再次重启kernel释放显存。

代码语言:javascript


import warnings
warnings.filterwarnings('ignore')

代码语言:javascript

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM,AutoConfig, BitsAndBytesConfig
from transformers.generation.utils import GenerationConfig
import torch.nn as nn

model_name_or_path =  'qwen_torchkeras'

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", 
                                             torch_dtype=torch.float16, trust_remote_code=True)
model.generation_config = GenerationConfig.from_pretrained(model_name_or_path)

我们测试一下微调后的效果。

非常棒,粗浅的测试表明,我们的多轮对话训练是成功的。已经在Qwen的自我认知中,种下了一颗梦中情炉的种子。😋😋

如何系统的去学习AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

  • 13
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值