大多数人工智能领域的工具都会使用到Python,这个需要提前安装,同时推荐使用虚拟环境进行环境的隔离,比如用Anaconda(conda create -n xxx
)或者使用Python自带的模块创建虚拟环境(python -m venv xxx
)。同时在使用前请记得激活环境。
训练
我们使用llama-3-chinese-8b-instruct-v3,好处是它已经通过中文语料进行了训练,将huggingface.co/hfl/llama-3…
注:如果在Huggingface上直接申请Llama模型的访问权限,国家最好不要选择中国,Alan的测试是选择中国遭拒,而选择美国则通过申请。
想过执行代码来自Chinese-LLaMA-Alpaca-3项目,执行代码这里使用了Git Bash,这样在Windows下可以获取和Linux相似的使用体验。
训练的代码位于scripts/training目录下,如果使用的是Mac或Linux,可以直接修改run_sft.sh
中相关目录直接运行Shell脚本。以下演示为通过Python代码运行:
css
代码解读
python run_clm_sft_with_peft.py --model_name_or_path /d/workspace/llama-3-chinese-8b-instruct-v3 --tokenizer_name_or_path /d/workspace/llama-3-chinese-8b-instruct-v3 --dataset_dir /d/workspace/Chinese-LLaMA-Alpaca-3/data --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --do_train 1 --do_eval 1 --seed 42 --bf16 1 --num_train_epochs 3 --lr_scheduler_type cosine --learning_rate 1e-4 --warmup_ratio 0.05 --weight_decay 0.1 --logging_strategy steps --logging_steps 10 --save_strategy steps --save_total_limit 3 --evaluation_strategy steps --eval_steps 100 --save_steps 200 --gradient_accumulation_steps 8 --preprocessing_num_workers 8 --max_seq_length 1024 --output_dir /d/workspace/output --overwrite_output_dir 1 --ddp_timeout 30000 --logging_first_step True --lora_rank 64 --lora_alpha 128 --trainable "q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj" --lora_dropou 0.05 --modules_to_save "embed_tokens,lm_head" --torch_dtype bfloat16 --validation_file /d/workspace/Chinese-LLaMA-Alpaca-3/data/ruozhiba_qa2449_gpt4t.json --load_in_kbits 16 --low_cpu_mem_usage True
以上数据集和验证集在做私有数据训练时需做相应修改,这里使用原仓库中的数据进行了演示,训练时间取决于硬件设备,我这里跑了一整夜:
合并
训练完成后如需具备通用模型的能力还应与原模型进行合并操作,这一代码在Alpaca的scripts目录下,命令如下:
bash
代码解读
python merge_llama3_with_chinese_lora_low_mem.py --base_model /d/workspace/llama-3-chinese-8b-instruct-v3 --lora_model /d/workspace/output --output_dir /d/workspace/output_merge
得到的文件如下:
量化
可以看到上图中的文件占用约15 GB,文件也较多,不利于部署,通常都会先进行量化处理,这里选择的项目为:github.com/ggerganov/l…
bash
代码解读
git clone https://github.com/ggerganov/llama.cpp.git
cd llama.cpp/
pip install -r requirements/requirements-convert_hf_to_gguf.txt
Linux和Mac下直接执行make
,Windows如无cmake,下载cmake,然后执行:
bash
代码解读
cmake -B build
cmake --build build --config Release
python convert_hf_to_gguf.py ../output_merge --outtype f16 --outfile ../output_models/llama3_chinese-8B-F16.gguf
./llama-quantize ../output_models/llama3_chinese-8B-F16.gguf ../output_models/llama3_chinese-8B-q4_0.gguf q4_0
量化后的llama3_chinese-8B-q4_0.gguf文件仅为4.5 GB。量化的算法较多,
WSL在make时会出现报错:
scripts/build-info.sh: 31: Syntax error: end of file unexpected (expecting "then")
,需执行:lua 代码解读 sudo apt install dos2unix find -type f -print0 | xargs -0 dos2unix
出现
CMake Error at CMakeLists.txt:2 (project): Running 'nmake' '-?' failed with: 系统找不到指定的文件。
尝试删除build目录再执行cmake
,如仍有问题可能和cmake与Visual Studio的安装有关,Alan直接使用Visual Studio所安装的cmake执行并没有发生异常(我安装在D盘,所以添加的环境变量为:D:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\CMake\bin)。编译后的命令位于build/bin/Release目录中。
部署
依然使用Alpaca项目,我们将使用Ollama进行部署,所以进入scripts/ollama目录,将Modelfile文件中FROM后的文件修改为刚刚所保存的llama3_chinese-8B-q4_0.gguf文件路径,然后创建模型,名称可自己选择:
lua
代码解读
ollama create llama3-chinese-8b-q4 -f Modelfile
执行以下命令运行该模型:
arduino
代码解读
ollama run llama3-chinese-8b-q4
此时就会发现模型不仅具备底座模型的能力,还可以回答我们微调数据集中的相关问题。
如何系统的去学习AI大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
全套 《LLM大模型入门+进阶学习资源包》↓↓↓ 获取~