医疗 AI 已经到来——但它足够值得信赖吗?

检索增强生成(RAG)将语言模型 (LLM) 与外部知识检索相结合,以提高事实准确性。非常适合医学等知识密集型领域,但会引入噪音和错误信息等复杂性。

在医疗领域,回答问题需要精准且可信的数据支撑,当前的生成式模型单凭训练数据难以达到这一要求。

图片

《Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering》通过创新性的评估框架揭示了 RAG 技术的潜力与局限,特别是在医疗等敏感领域中的应用前景。MedRGB 不仅填补了当前研究中的空白,还为未来开发更安全、可靠的医疗AI提供了实践工具。可以期待未来的研究进一步完善这一技术,将其应用于更广泛的实际场景。

当前存在的问题 

当前的RAG评估基准通常集中于单一任务(例如标准的检索-回答设置),忽视了实际系统开发中的重要场景,包括:

  • 检索信息是否足够支持回答(充分性)。

  • 检索信息是否能被有效整合(整合性)。

  • 系统应对噪声和误导信息的能力(鲁棒性)。

医疗问答系统的独特挑战:

  • 医疗问题对准确性要求极高,错误信息可能导致严重后果。

  • 数据集中的噪声、不确定性和检索结果的多样性增加了开发难度。

提出新评估框架:MedRGB

MedRGB(Medical Retrieval-Augmented Generation Benchmark,医疗检索增强生成基准)是一个用于评估医疗保健中 RAG 系统的突破性框架。它重点关注:

  • 充分性:系统能否检测到缺乏足够信息的情况?

  • 集成:系统如何很好地结合多种证据?

  • 稳健性:系统能否处理错误信息或错误?

  • 标准 RAG:在正常检索条件下的表现如何?

医疗保健需要准确性。一个小错误可能会带来巨大的后果。MedRGB 确保 AI 系统符合现实世界的标准。

MedRGB 的工作原理

  • 数据集:包括来自 PubMedQA 和 BioASQ 等来源的真实世界医疗 QA 挑战。

  • 测试:评估系统在噪声、错误信息和多文档检索方面的表现。

  • 见解:帮助识别当前 AI 系统中的差距并为改进指明方向。

研究结果 

发现与不足

  • 鲁棒性不足:现有 RAG 系统在处理噪声文档和误导性信息时表现较差,常因错误信息导致回答错误。

  • 整合能力有限:模型对多文档信息的有效整合能力不足,尤其是当信息间存在冲突时。

  • 推理过程欠佳:大模型在解释复杂逻辑或处理数据冲突时仍然存在显著困难。

具体表现

  • 商业化模型在大部分场景下的性能优于开源模型,但在信息稀缺或高噪声情况下两者表现均不理想。

  • 实验揭示了检索模块的重要性,错误或不相关的检索结果显著降低了回答质量。

未来方向和应用价值 

理论价值

  • 提供了一个更接近实际使用场景的评估标准,为研究人员优化RAG系统指明了方向。

  • 数据和框架可扩展至其他知识密集型领域(如法律、教育等)。

技术应用

  • 为医疗问答系统的开发者提供了诊断工具,有助于改进模型在噪声数据中的表现

  • 通过分析推理过程,揭示了模型内部的潜在问题,为未来设计更高效的检索与生成协作机制提供了启发。

社会影响

  • 在医疗领域构建更加可信的AI系统,帮助医生和患者高效获取准确的信息。

  • 减少因模型生成错误信息而可能导致的医疗事故风险。

论文链接:

https://t.co/muZynJuMQS

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值