LangGraph 入门与实战:利用LangGraph去实现一个可调用工具的Agent

LangGraph是LangChain基础上的一个库,是LangChain的LangChain Expression Language (LCEL)的扩展。能够利用有向无环图的方式,去协调多个LLM或者状态,使用起来比 LCEL 会复杂,但是逻辑会更清晰。

LangGraph就相当于一种高级的LCEL语言,是值得一试。

安装也十分简单。注意,这个库需要自己去安装,默认的LangChain不会安装这个库。

shell
pip install langgraph

由于,OpenAI访问不方便,我们统一使用智普AI的大模型进行下面的实践。

智普AI的接口和OpenAI的比较类似,因此也可以使用OpenAI的tools的接口,目前还没有发现第二家如此方便的接口。实际使用起来,还是比较丝滑的,虽然有一些小问题。

我们下面以ToolAgent的思想,利用LangGraph去实现一个可以调用工具的Agent。

定义工具以及LLM

工具的定义,可以参考这篇文章,写的比较详细了,比较方便的就是使用 tools 这个注解。

定义Agent的状态

LangGraph 中最基础的类型是 StatefulGraph,这种图就会在每一个Node之间传递不同的状态信息。然后每一个节点会根据自己定义的逻辑去更新这个状态信息。具体来说,可以继承 TypeDict 这个类去定义状态,下图我们就定义了有四个变量的信息。

  • input:这是输入字符串,代表用户的主要请求。
  • chat_history: 这是之前的对话信息,也作为输入信息传入.
  • agent_outcome: 这是来自代理的响应,可以是 AgentAction,也可以是 AgentFinish。如果是 AgentFinish,AgentExecutor 就应该结束,否则就应该调用请求的工具。
  • intermediate_steps: 这是代理在一段时间内采取的行动和相应观察结果的列表。每次迭代都会更新。
python
class AgentState(TypedDict):
    # The input string
    input: str
    # The list of previous messages in the conversation
    chat_history: list[BaseMessage]
    # The outcome of a given call to the agent
    # Needs `None` as a valid type, since this is what this will start as
    agent_outcome: Union[AgentAction, AgentFinish, None]
    # List of actions and corresponding observations
    # Here we annotate this with `operator.add` to indicate that operations to
    # this state should be ADDED to the existing values (not overwrite it)
    intermediate_steps: Annotated[list[tuple[AgentAction, str]], operator.add]

定义图中的节点

在LangGraph中,节点一般是一个函数或者langchain中runnable的一种类。

我们这里定义两个节点,agent和tool节点,其中agent节点就是决定执行什么样的行动,

tool节点就是当agent节点选择执行某个行动时,去调用相应的工具。

此外,还需要定义节点之间的连接,也就是边。

条件判断的边:定义图的走向,比如Agent要采取行动时,就需要接下来调用tools,如果Agent说当前的的任务已经完成了,则结束整个流程。

普通的边:调用工具后,始终需要返回到Agent,让Agent决定下一步的行动

python
from langchain_core.agents import AgentFinish
from langgraph.prebuilt.tool_executor import ToolExecutor

# This a helper class we have that is useful for running tools
# It takes in an agent action and calls that tool and returns the result
tool_executor = ToolExecutor(tools)


# Define the agent
def run_agent(data):
    agent_outcome = agent_runnable.invoke(data)
    return {"agent_outcome": agent_outcome}


# Define the function to execute tools
def execute_tools(data):
    # Get the most recent agent_outcome - this is the key added in the `agent` above
    agent_action = data["agent_outcome"]
    print("agent action:{}".format(agent_action))
    output = tool_executor.invoke(agent_action[-1])
    return {"intermediate_steps": [(agent_action[-1], str(output))]}


# Define logic that will be used to determine which conditional edge to go down
def should_continue(data):
    # If the agent outcome is an AgentFinish, then we return `exit` string
    # This will be used when setting up the graph to define the flow
    if isinstance(data["agent_outcome"], AgentFinish):
        return "end"
    # Otherwise, an AgentAction is returned
    # Here we return `continue` string
    # This will be used when setting up the graph to define the flow
    else:
        return "continue"

定义图

然后,我们就可以定义整个图了。值得注意的是,条件判断的边和普通的边添加方式是不一样的

最后需要编译整个图,才能正常运行。

python
# Define a new graph
workflow = StateGraph(AgentState)

# Define the two nodes we will cycle between
workflow.add_node("agent", run_agent)
workflow.add_node("action", execute_tools)

# Set the entrypoint as `agent`
# This means that this node is the first one called
workflow.set_entry_point("agent")

# We now add a conditional edge
workflow.add_conditional_edges(
    # First, we define the start node. We use `agent`.
    # This means these are the edges taken after the `agent` node is called.
    "agent",
    # Next, we pass in the function that will determine which node is called next.
    should_continue,
    # Finally we pass in a mapping.
    # The keys are strings, and the values are other nodes.
    # END is a special node marking that the graph should finish.
    # What will happen is we will call `should_continue`, and then the output of that
    # will be matched against the keys in this mapping.
    # Based on which one it matches, that node will then be called.
    {
        # If `tools`, then we call the tool node.
        "continue": "action",
        # Otherwise we finish.
        "end": END,
    },
)

# We now add a normal edge from `tools` to `agent`.
# This means that after `tools` is called, `agent` node is called next.
workflow.add_edge("action", "agent")

# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable
app = workflow.compile()

总代码

下面是所有的可执行代码,注意,需要将api_key替换为自己的api_key。

python
# !/usr/bin env python3
# -*- coding: utf-8 -*-
# author: yangyunlong time:2024/2/28
import datetime
import operator
from typing import TypedDict, Annotated, Union, Optional,Type,List

import requests
from langchain import hub
from langchain.agents import create_openai_tools_agent
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import BaseTool, tool
from langchain_core.agents import AgentAction
from langchain_core.agents import AgentFinish
from langchain_core.messages import BaseMessage
from langgraph.graph import END, StateGraph
from langgraph.prebuilt.tool_executor import ToolExecutor
from zhipu_llm import ChatZhipuAI

zhipuai_api_key = ""
glm3 = "glm-3-turbo"
glm4 = "glm-4"

chat_zhipu = ChatZhipuAI(
    temperature=0.8,
    api_key=zhipuai_api_key,
    model=glm3
)


class Tagging(BaseModel):
    """分析句子的情感极性,并输出句子对应的语言"""
    sentiment: str = Field(description="sentiment of text, should be `pos`, `neg`, or `neutral`")
    language: str = Field(description="language of text (should be ISO 639-1 code)")


class Overview(BaseModel):
    """Overview of a section of text."""
    summary: str = Field(description="Provide a concise summary of the content.")
    language: str = Field(description="Provide the language that the content is written in.")
    keywords: str = Field(description="Provide keywords related to the content.")


@tool("tagging", args_schema=Tagging)
def tagging(s1: str, s2: str):
    """分析句子的情感极性,并输出句子对应的语言"""
    return "The sentiment is {a}, the language is {b}".format(a=s1, b=s2)


@tool("overview", args_schema=Overview)
def overview(summary: str, language: str, keywords: str):
    """Overview of a section of text."""
    return "Summary: {a}\nLanguage: {b}\nKeywords: {c}".format(a=summary, b=language, c=keywords)


@tool
def get_current_temperature(latitude: float, longitude: float):
    """Fetch current temperature for given coordinates."""

    BASE_URL = "https://api.open-meteo.com/v1/forecast"

    # Parameters for the request
    params = {
        'latitude': latitude,
        'longitude': longitude,
        'hourly': 'temperature_2m',
        'forecast_days': 1,
    }

    # Make the request
    response = requests.get(BASE_URL, params=params)

    if response.status_code == 200:
        results = response.json()
    else:
        raise Exception(f"API Request failed with status code: {response.status_code}")

    current_utc_time = datetime.datetime.utcnow()
    time_list = [datetime.datetime.fromisoformat(time_str.replace('Z', '+00:00')) for time_str in
                 results['hourly']['time']]
    temperature_list = results['hourly']['temperature_2m']

    closest_time_index = min(range(len(time_list)), key=lambda i: abs(time_list[i] - current_utc_time))
    current_temperature = temperature_list[closest_time_index]

    return f'The current temperature is {current_temperature}°C'


tools = [tagging, overview, get_current_temperature]
# Get the prompt to use - you can modify this!
prompt = hub.pull("hwchase17/openai-tools-agent")

# Construct the OpenAI Functions agent
agent_runnable = create_openai_tools_agent(chat_zhipu, tools, prompt)


class AgentState(TypedDict):
    # The input string
    input: str
    # The list of previous messages in the conversation
    chat_history: list[BaseMessage]
    # The outcome of a given call to the agent
    # Needs `None` as a valid type, since this is what this will start as
    agent_outcome: Union[AgentAction, AgentFinish, None]
    # List of actions and corresponding observations
    # Here we annotate this with `operator.add` to indicate that operations to
    # this state should be ADDED to the existing values (not overwrite it)
    intermediate_steps: Annotated[list[tuple[AgentAction, str]], operator.add]


# This a helper class we have that is useful for running tools
# It takes in an agent action and calls that tool and returns the result

tool_executor = ToolExecutor(tools)

# Define the agent
def run_agent(data):
    agent_outcome = agent_runnable.invoke(data)
    return {"agent_outcome": agent_outcome}


# Define the function to execute tools
def execute_tools(data):
    # Get the most recent agent_outcome - this is the key added in the `agent` above
    agent_action = data["agent_outcome"]
    print("agent action:{}".format(agent_action))
    output = tool_executor.invoke(agent_action[-1])
    return {"intermediate_steps": [(agent_action[-1], str(output))]}


# Define logic that will be used to determine which conditional edge to go down
def should_continue(data):
    # If the agent outcome is an AgentFinish, then we return `exit` string
    # This will be used when setting up the graph to define the flow
    if isinstance(data["agent_outcome"], AgentFinish):
        return "end"
    # Otherwise, an AgentAction is returned
    # Here we return `continue` string
    # This will be used when setting up the graph to define the flow
    else:
        return "continue"


# Define a new graph
workflow = StateGraph(AgentState)

# Define the two nodes we will cycle between
workflow.add_node("agent", run_agent)
workflow.add_node("action", execute_tools)

# Set the entrypoint as `agent`
# This means that this node is the first one called
workflow.set_entry_point("agent")

# We now add a conditional edge
workflow.add_conditional_edges(
    # First, we define the start node. We use `agent`.
    # This means these are the edges taken after the `agent` node is called.
    "agent",
    # Next, we pass in the function that will determine which node is called next.
    should_continue,
    # Finally we pass in a mapping.
    # The keys are strings, and the values are other nodes.
    # END is a special node marking that the graph should finish.
    # What will happen is we will call `should_continue`, and then the output of that
    # will be matched against the keys in this mapping.
    # Based on which one it matches, that node will then be called.
    {
        # If `tools`, then we call the tool node.
        "continue": "action",
        # Otherwise we finish.
        "end": END,
    },
)

# We now add a normal edge from `tools` to `agent`.
# This means that after `tools` is called, `agent` node is called next.
workflow.add_edge("action", "agent")

# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable
app = workflow.compile()

inputs = {"input": "what is the weather in NewYork", "chat_history": []}
result = app.invoke(inputs)
print(result["agent_outcome"].messages[0].content)

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### 关于 LangGraph 的学习资源 对于希望深入了解或开始学习 LangGraph 的开发者而言,存在多种高质量的学习材料可供选择。 #### 官方文档教程 官方文档提供了详尽的概念介绍和技术细节解析[^1]。通过这些资料能够掌握如何创建复杂的智能体应用程序以及理解其核心组件的工作原理。此外,《LangGraph快速入门》不仅涵盖了安装配置过程中的要点还包含了实际案例研究来帮助新手更快地上手实践。 #### 实战指南 针对那些希望通过项目驱动方式深入探索该技术框架的人士,《实战LangChain(四):LangGraph入门——状态管理基础结构》提供了一个很好的起点[^2]。这份笔记记录了一系列具体的实现方法论,并附带完整的代码样例用于演示不同功能模块之间的协作机制。 #### 基础概念详解 为了更好地理解和运用StatefulGraph这一重要特性,在参考资料中有专门章节解释了什么是状态信息及其传递规则[^3]。这部分内容强调了自定义状态类型的灵活性,即可以通过继承`TypeDict`类来自由设定所需的状态参数并控制它们在整个计算流程里的演变规律。 ```python from typing import TypedDict, Any class CustomState(TypedDict): variable_1: str variable_2: int variable_3: float variable_4: bool def update_state(current_state: CustomState, new_data:Any)->CustomState: updated = current_state.copy() # 更新逻辑... return updated ``` 上述代码片段展示了怎样基于给定模板扩展新的状态表示形式,并编写函数处理状态转换的过程。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值