大家好,我是蘑菇先生。近期DeepSeek爆火,目前官网服务的不稳定性,成为尝鲜的阻碍。本文将详细介绍如何本地化部署DeepSeek,并应用于生活和工作。在大多数情况下,优先推荐官网chat或者官网API调用,效果更佳。本文的主要面向场景在于:免费、稳定、高效且隐私安全。
-
AI编程助手:如何通过Ollama(本地大模型引擎) + VS Code + DeepSeek (轻量化模型),作为cursor的平替;
-
聊天机器人:集成open WebUI/chatbox实现可视化聊天,用于生活经验咨询、学习、写文案等, 构建本地agent库,官网R1完全体的平替;
-
API调用:集成python API实现本地模型调用,用于NLP等算法开发工作;
-
本地知识库:集成anythingLLM构建本地知识库,解决部分隐私数据需要上传云端造成的合规问题,包括办公文档、小说创作、法律文书等。
一、AI编程助手
1. 安装Ollama(本地大模型引擎)
访问ollama.ai下载对应版本,安装后执行,该指令会自动拉取模型到本地并部署。支持mac/windows/linux等。
ollama run deepseek-r1:7b` `ollama run qwen2.5-coder:1.5b
(鉴于很多朋友无法下载ollama,这里给大家整理好了ollama的安装包,扫描领取即可↓↓↓↓)
2. VS Code安装Continue插件
在扩展商店搜索"Continue":
还有一些其他可替代的软件,比如Roo CODE、codeGPT等,大差不差。
3. 配置DeepSeek/Qwen模型
在VS Code设置中追加配置(注意provider
字段需为ollama
):
`"models": [ { "model": "AUTODETECT", "title": "Autodetect", "provider": "ollama" }, { "title": "qwen2.5-coder:1.5b", "model": "qwen2.5-coder:1.5b", "provider": "ollama" }, { "title": "deepseek-r1:1.5b", "model": "deepseek-r1:1.5b", "provider": "ollama" } ], "tabAutocompleteModel": { "title": "qwen2.5-coder:1.5b", "provider": "ollama", "model": "qwen2.5-coder:1.5b" }`
4. 功能实战
实测Apple M2 Pro 16G内存 + 512G SSD
跑1.5b/7b基本没有问题,速度很快。闲时不占GPU,7b聊天时GPU占用达~90%。
智能补全
配置:
输入注释:
# 用pandas读取CSV,统计各城市销量TOP3
按下TAB键,AI将自动生成完整代码段,支持逐行确认插入。
代码聊天
选中问题代码,右键选择"Continue Add Highlighted Code to Context":
解读下grpo源码:
二、本地化部署其他玩法
除了集成到vscode,也可以通过多种方式使用。
1. python API调用
from ollama import chat stream = chat( model='deepseek-r1:1.5b', messages=[{'role': 'user', 'content': '为什么天空是蓝色的?'}], stream=True, ) for chunk in stream: print(chunk['message']['content'], end='', flush=True) # 输出 <think> 嗯,为什么会天蓝色呢?这个问题我以前听说过,但具体原因好像不太清楚。我觉得可能和地球表面的变化有关吧?比如风、云彩或者阳光照射等等。 首先,太阳本身发出的是白光,颜色很丰富,既有红、黄、蓝也有其他颜色。如果阳光直接照到天空上,天可能会看起来像阳光一样鲜艳,但为什么是蓝色呢?是不是因为阳光反射的原因? 另外,云层的颜色也会影响天空的 appearance。比如有飘带会把颜色拉长成一条线,使得天空看起来更有层次感。这些变化会不会改变颜色呢?或许是因为光线的不同角度照射导致了不同的颜色。 还有一个可能是大气中的气体成分和热辐射的变化。比如说,蓝光和红光可能在不同时间到达地面,导致天空呈现出不同的色调。比如蓝光可能在阳光最高峰出现,而红光则在地面较早出现。 我还记得以前看到的天色变化,比如晴朗的天有黄色,多云的时候可能变成橙色或者红色,甚至蓝色?是不是这样呢?如果有这种现象,那颜色的变换与大气中的气体成分和热辐射有关,特别是蓝光的传播。 还有宇宙中的星体,尤其是恒星,它们 emit a lot of blue light。这些光线反射到天空上,导致天看起来是蓝色。这可能就是为什么天空通常是蓝色。 不过,我有点不确定是不是所有情况下都是这样。比如阳光强烈的时候,会不会让颜色变得很鲜艳?或者是因为太阳周围有云层遮挡,导致颜色变化?另外,地球的自转和公转也会影响光线到达的时间点,从而改变颜色。 还有,不同区域的温度和光照强度可能对天空的颜色产生影响。例如,在温暖的地区,阳光可能更强烈,而颜色更鲜艳;在冷的地方,颜色会变淡一些。 总结一下,我觉得天空是蓝色主要是因为阳光反射、大气中的热辐射以及云层的影响,这些因素共同作用导致天空呈现出蓝色。我还不太确定有没有其他因素影响这个现象,比如地面的温度或者光线的方向变化。 </think> 天空呈现蓝色的主要原因与以下几个方面有关: 1. **太阳光的颜色**:太阳发出的光包括红、黄、蓝等多种颜色。如果阳光直接照到天空上,天可能会显得鲜艳,但实际的天空呈现蓝色是因为阳光反射。 2. **大气中的热辐射**:太阳产生的热量在空气中扩散,形成了热辐射,这些能量以不同颜色形式传递到空气中,导致天空呈现出蓝色。 3. **云层的影响**:云层的颜色和分布会影响天空的 appearance。飘带将颜色拉长形成线条,使天空层次感更强。此外,蓝光可能在阳光最高峰出现,而红光则较早出现。 4. **地表温度变化**:不同区域的温度和光照强度影响光线到达的时间点,从而改变颜色。温暖地区可能有更鲜艳的颜色,冷的地方颜色较淡。 综上所述,天空呈现蓝色主要由太阳光、大气中的热辐射以及云层的影响共同作用引起,这些因素共同作用使得天空呈现出蓝色。
2. 聊天机器人: 安装open WebUI或Chatbox可视化聊天
3. 构建个人知识库:安装anythingLLM
面向一些隐私场景,数据不方便上传到外网。通过向量数据库+RAG,构建个人知识库。支持本地和远程向量数据库、agent工具等。
功能挺多的,但是目前体验下来效果很差,不知道是否是打开方式不对。
以paper为例,上传个人知识库后,会自动embedding并存入向量数据库,即可开启聊天,查资料等。
结语
Ollama本地化部署的模型可用于:
-
AI编程助手:集成VS code开发编程助手,作为cursor的平替;
-
聊天机器人:集成open WebUI/Chatbox实现可视化聊天;
-
Python API:集成python API实现本地模型调用;
-
anythingLLM:集成anythingLLM构建本地知识库,包括paper阅读、小说创作、法律文书等。
由于R1模型推理能力非常强,预计未来应用潜力巨大。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓